
Comparing Advanced Graph-based and Transition-based Dependency
Parsers

Bernd Bohnet
University of Stuttgart

Institut für Maschinelle Sprachverarbeitung
bohnet@ims.uni-stuttgart.de

Abstract

In this paper, we compare a higher or-
der graph-based parser and a transition-
based parser with beam search. These
parsers provide a higher accuracy than a
second order MST parser and a determin-
istic transition-based parser. We apply and
compare the output on languages, which
have not been in the research focus of
Shared Tasks. The parser are implemented
in a uniform framework. The transition-
based parser was newley implemented and
we revised the graph-based parser. The
graph-based parser has to our knowlege
the highest published scores for French
and Czech with 90.40 and 81.43 labeled
accuracy score.

1 Introduction

The two main approaches to data-driven depen-
dency parsing are transition-based dependency
parsing (Yamada and M., 2003; Nivre, 2003;
Nivre et al., 2004; Titov and Henderson, 2007)
and maximum spanning tree based dependency
parsing (Eisner, 1996; Eisner, 2000; McDonald
and Pereira, 2006; Carreras, 2007; Johansson and
Nugues, 2008).

The transition-based approach, might not pro-
vide the highest score for instance for English.
Nevertheless, it can be justified to improve one of
the approaches on its own because for some lan-
guages such as Catalan and Spanish, it had higher
scores in the CoNLL shared task 2009, cf. (Ges-
mundo et al., 2009). The transition-based ap-
proach has a lower complexity and it is easier to

implement. For stacking experiments with both
approaches, each has to be optimized separately
towards speed and accuracy.

A statistical transition-based parser learns
which actions to perform for building a depen-
dency graph while scanning a sentence. The parser
builds the dependency trees by going left-to-right
(or right-to-left) through the words of a sentence.
At each step, a classifier selects the appropriate
parsing action for the current state based on a
set of features. Transition-based parsers typically
have a linear or quadratic complexity (Nivre et al.,
2004; Attardi, 2006). Nivre (2009) introduces a
transition-based non-projective parsing algorithm
that has a worst case quadratic complexity and
an expected linear parsing time. Titov and Hen-
derson (2007) combine a transition-based pars-
ing algorithm that uses a beam search with a la-
tent variable machine learning technique. The lat-
est update of this parser provided the best accu-
racy for transition-based dependency parsing in
the CoNLL shared task 2009 (Gesmundo et al.,
2009).

Graph-based dependency parsers start with
a completely connected graph whose edges are
weighted according to a statistical model. They
then try to find the spanning tree that covers all
nodes in the graph (the words) and at the same
time maximizes the sum of the edges belonging to
the spanning tree. The original non-projective for-
mulation by McDonald et al. (2005) had a com-
plexity of O(n2) but was not capable of taking
second-order features into account (making the
choice for an edge depending on already chosen
edges). Second order MST parsing was shown
to significantly improve results compared to first-

282



order parsing (McDonald et al., 2006; Carreras,
2007) but at the cost of a higher complexity (Mc-
Donald and Satta, 2007). Carreras (2007) also
fully integrated edge labels into the parsing pro-
cedure by adding an additional loop over the set
of edge labels (L), thus raising performance as
well as theoretical complexity (O(n4L)). Johans-
son and Nugues (2008) reduced the number of
loops over the edge labels by looking only at those
edges that existed in the training corpus for a dis-
tinct head and child part-of-speech tag combina-
tion. Recently, Koo and Collins (2010) introduced
an efficient third-order dependency parsing algo-
rithm. The algorithm considers substructures con-
taining three dependencies, and is called efficient
because it requires only O(n4) time. The parsing
algorithm can utilize both features with sibling and
grandchild information.

We apply a discriminative training method that
employs a hash kernel to transition-based depen-
dency parsing. Results show state-of-the-art unla-
beled and labeled accuracy scores and fast parsing
times. We illustrate that negative features can im-
prove the accuracy of transition-based dependency
parsers. Zhang and Clark (2008) as well as Ges-
mundo et al. (2009) applied a beam search to im-
prove the accuracy of transition-based parsers.

2 Transition-based Parsing

We define a deterministic transition-based edge
eager parser formally Te = 〈σ, β,Ω, ε, L,Π〉 con-
sisting of a list σ (stack), the list β (input), a set of
operations Ω = {shift, left-arc, right-arc, reduce},
a set of edges ε and a set of states Π. A state
πi={σi, βi, εi}, πi ∈ Π consists of a list σi, an
input buffer βi and a set of edges εi.

(1) The initial state π1 has an empty list σ1,
the input buffer β1 contains the words of a sen-
tence, and the edge set ε is empty. (2) A transition
τi(πi, ω) : Π x Ω → Π is a binary function that
maps a state and an operation to a new state πi+1.
We write a transition as πi →ω πi+1. (3) The final
state πf has an empty input buffer βf and there-
fore, no further operations are applicable.

The history of the (partial) parse h is a list of
operations. We can define the operations and pre-
conditions for the operations as follows:

The shift transition τs : πi →shift πi+1 re-
moves the first element of the input buffer wn ∈ βi

where: βi = {wn, ...} and adds the word to the
end of the list σi+1 ← σi ∪ {wn}. We obtain the

next state with πi+1 = {σi+1, βi+1, εi}. Precon-
dition: βi �= ∅

The left-arc transition τl : πi →label
left−arc πi+1

adds the last element [+ sl] of the list σi and
the first element [+ b1] of βi: εi+1 ← εi ∪
{(b1, label, sl)}; the element sl is removed from
σi: σi+1 ← σi − {sl} and the first element of the
input buffer is added as the last element to the list
σi: σi+1 ← σi ∪ {b1}: πi+1 = {σi+1, βi+1, εi+1}
Precondition: βi �= ∅ and σi �= ∅ and not has-
head(sl)

The right-arc transition τr : πi →label
right−arc

πi+1 adds an edge between the last element se ∈
σi and the first element bo ∈ βi; σi+1 ← σ ∪ {b0}
and βi+1 ← βi−{b0} εi+1 ← εi∪{(sl, label, b1)}
Precondition: βi �= ∅, & σi �= ∅ and has-head(sr )

The reduce transition τr : πi →reduce πi+1

removes the last element of sl ∈ σi: σi+1 ←
σ − {sl} Precondition: σi �= ∅

Applying this definition, we define the
transition-based dependency parser with beam
search in Algorithm 1. We score a transition

Algorithm 1: Transition-based parser with
beam search

// xc is a input sentence
σ0 = ∅, β0 = xc, ε0 = ∅, h = ∅
π0 ← {σ0, β0, ε0, h0} // initial parts of a state
beam0 ← {π0} // create initial state
n← 0// iteration
repeat

for all πj ∈ beamn do
operations← possible-applicable-operation (πj)
// if no operation is applicable keep state πj

if operations = ∅ then beamn ← beamn ∪ {πj}
else for all ωi ∈ operations do

π ← τ (πj, ωi)// apply the operation i to state j
beamn ← beamn ∪ {π}

// end for
// end for
// the score function is defined in the next section
sort beamn due to the score(πj )
beamn ← sublist (beamn, 0, beam-size)
n← n + 1

until beamn−1 = beamn // stop when the beam is not changed

sequence h as the sum of the scores for the
individual transitions wi ∈ h:

score (π) =
∑|h|

i=0 F (πi, ωi)

Note that a state πi contains the stack σi, input
buffer βi, and set of edges εi. These elements are
taken into account to create the feature set. The
feature set is the input for the support vector ma-
chine; it provides the score due to the features.

283



3 Hash Kernel

We use a linear support vector machine with
a Hash Kernel as classifier for our dependency
parser, cf. (Shi et al., 2009; Bohnet, 2010). The
Hash Kernel uses instead of a table to map the fea-
tures to the indexes in the weight vector a random
function. Therefore, the Hash Kernel can quickly
process large numbers of features and hence we
can use “negative” features. In most parsing ap-
proaches features are collected prior to the training
phase which are derived from the gold trees and in
the training phase, the feature set is not extended
further. However, the decoder creates wrong struc-
tures and the features derived from predicted trees
are often not found since they do not occur in the
gold trees. We counted 9 times more negative fea-
tures than positive ones. A Hash Kernel for struc-
tured data uses the hash function h : J → {1...n}
to index φ. φ maps πi to a feature space. We de-
fine φ(πi) as the numeric feature representation
indexed by J . Let φk(x, y) = φj(x, y) the hash
based feature–index mapping, where h(j) = k.
The scoring function of the Hash Kernel is

F (πi) = −→w ∗ φ(σi, βi, εi, ωi)

where −→w is the weight vector and the size of−→w is
n.

Algorithm 2: Update of the Hash Kernel
//πi is the state of a predicted state and
//πg the gold state including the transition
//sequences hg and hi for the gold and predicted state
// update(−→w,−→v , πi, πg , γ)

err= ∆(hg, hi) // number of wrong transitions
if err > 0 then
−→u ← (φ(πi)− φ(πg)

ν = err−(F (πi)−F (πg))

||−→u ||2−→w ← −→w − ν ∗ −→u−→v ← −→v − γ ∗ ν ∗ −→u
return −→w , −→v

Algorithm 2 illustrates the update function of
the Hash Kernel. The update function is similar
to that of (Crammer et al., 2006). The parame-
ters of the function are the weight vectors−→w and
−→v , the predicted state πi, the gold state πg, which
should been have built by the parsing algorithm
so far, and the update weight γ. The function ∆
calculates the number of wrong transitions. The
update function updates the weight vectors, when
a transition is wrong. It calculates the difference
−→u of the feature vectors of the gold dependency
structure φ(πi) and the predicted transition φ(πg).

The hash function fh maps the features to integer
numbers between 1 and |−→w |. After that the up-
date function calculates the margin ν and updates
−→w and −→v respectively. The second weight vector
is used for averaging in order to avoid overfitting
and collects the weight of all training rounds with
a passive-aggressive update.

4 Feature Selection

Transition-based dependency parsers are most fre-
quently used with polynomial kernels of degree
two since it is very convenient to specify features,
cf. (Hall et al., 2006; Nivre et al., 2007; Nivre,
2009). SVMs of degree two use automatically
derived combinations of at most two simple fea-
tures. On the other hand, linear support vector
machines provide faster training and classification
times. Linear SVMs require a higher manual effort
to select the features and combination of simple
features because that involves many experiments
where each time a parser has to be trained in or-
der to find good combinations of simple features.
Therefore, we had to perform a feature selection
considering feature and combination. The feature
templates are shown in Table 1.

5 Efficient Implementation

We want to emphasize similar to Goldberg and El-
hadad (2010) that the parsing time is to a large
degree determined by the feature extraction, the
score calculation and the implementation.

We use a rich feature set and negative features.
Nevertheless the parser is still fast with 47 sen-
tences per second. This is because of the effi-
ciency of the Hash Kernel, which is about four
times faster than our implementation of the per-
ceptron algorithm. With our baseline perceptron
algorithm, we use about about 6 million features.
The hash kernel uses about 50 million features
including negative features. Our algorithms pro-
vides labeled trees, which distinguishes it from
(Zhang and Clark, 2008) and (Goldberg and El-
hadad, 2010). Some further optimizations are: (1)
For the implementation of the beam, we store and
reuse the calculated scores. We use a two step
approach. We extract and store the values of the
features that do not contain structural elements or
elements of the stack σ except the last elements.
This part of the weight is only calculated once and
stored. Goldberg and Elhadad (2010) use a simi-
lar technique. We have to calculate the second part

284



Standard Features
L,t,x,y :x∈ {sF,sP}&y ∈ {bF,bP} L,t,sP,bP,x : x∈ {s-1P,s+1P,s+2P,s-2P}
L,t,x,y,z :x∈ {s-1P,s+1P} & y∈ {b-1P,b+1P,b-2P,b+2P} & z∈ {sP,bP}
L,t,x,y,z :x∈ {s-1F,s+1F} & y∈ {b-1F,b+1F,b-2F,b+2F} & z∈ {sP,bP}
L,t,x,y,z :x∈ {s-1F,s+1F} & y∈ {b-1P,b+1P,b-2P,b+2P} & z∈ {sP,bP}
L,t,s-1F,s-2F,bP ; L,t,s-2F,s-3F,bP ; L,t,s+1F,s+2F,bP L,t,s+2F,s+3F,bP
L,t,b-1F,b-2F,sP ; L,t,b-2F,b-3F,sP ; L,t,b+1F,b+2F,sP L,t,b+1F,b+2F,sP
L,t,s-1P,s-2P,bP ; L,t,s-2P,s-3P,bP ; L,t,s+1P,s+2P,bP L,t,s+2P,s+3P,bP
L,t,b-1P,b-2P,sP ; L,t,b-2P,b-3P,sP ; L,t,b+1P,b+2P,sP L,t,b+2P,b+3P,sP
L,t,sP,x,y : x ∈ {s+1F,s+2F,s+3F} & y ∈ {b+1P,b+2P,b+3P}
L,t,sP,bP,x,y : x ∈ {s-1P,s+1P} & y ∈ {b-1P,b+1P}
Structural Features
L,t,x,bP,h(s) : x ∈ {s+1F,s+1F} L,t,x,sP,h(s) : x ∈ { b+1F,b+1P}
L,t,sP,bP,x : x ∈ {leftsib(s)L,head(s1)L,leftsib(s1)L,head(s2)L} L,t,s1P,s2P
L,t,sP,bP,x : x ∈ {leftsib(s)P,head(s1)P,leftsib(s1)P,head(s2)P}
L,t,bP,x,y: x∈ {b+1F,b+2F,b+3F} & y∈ {s+1P,s+2P,s+3P}

Table 1: t represents a transition type, s the last word of σ, b the first word of the input β. P represents
the part-of-speech-tag, F the form and L the label. -1,+1,+2, etc. denote the location one or two word
before or after an element. h denotes the head and leftsib the the leftmost sibling and rightsib rightmost
sibling. s1, s2, b1, etc. are the last but one of σ, etc.

wrong edges total number % of correct edges
G T of edges G T

PMOD 315 334 5593 94.36 93.84
VC 15 14 1771 99.15 99.2
SBAR 56 57 1195 95.31 95.23
SUB 145 161 4108 96.47 96.08
PRD 47 56 832 94.35 93.26
P 875 931 7301 88.01 87.24
AMOD 339 339 2072 83.63 83.63
OBJ 142 155 1960 92.75 92.09
ROOT 92 121 2416 96.19 94.99
NMOD 1206 1235 21002 94.25 94.11
VMOD 938 997 8175 88.52 87.8
DEP 95 122 259 63.32 52.89

Table 2: Labeled accuracy scores of the graph-based (G) and transition-based (T) parse for distinct edge
types using the Penn2Malt conversion.

of the score each time anew since this depends on
structural parts (e.g left-most sibling of sl) and the
elements of σ. The space complexity is O(n2L)
for the feature caching. (2) Furthermore, the cal-
culation of each score is optimized: We calculate
for each location determined by the last element
sl ∈ σi and the first element of b0 ∈ βi a numeric
feature representation. This is kept fix and we add
only the numeric value for each of the edge la-
bels plus a value for the operation left-arc or right-
arc. In this way, we create the features incremen-
tally. (3) Further, we applied edge filtering as it is
used in graph-based dependency parsing, cf. (Jo-
hansson and Nugues, 2008), i.e., we calculate the
edge weights only for the labels that were found
for the part-of-speech combination of the head and
dependent in the training data.

6 Graph-based Parser

The basis for the graph-based parser is a higher or-
der graph-based dependency parser developed by
Bohnet (2010). We contribute two parts to this
parser, which will become publicly available. A
revision of the feature set and a new random func-
tion for the hash kernel that allows to create fea-
tures incrementally. Based on the incremental fea-
tures creation, we can provide a faster feature ex-
traction. For the higher order dependency parser,
the feature extraction iterates for all edges over all
possible labels since the labels are part of the fea-
ture. Johansson and Nugues (2008) introduced the
concept of edge filters. Edge filter constrain the
possible edges labels to the labels, which occur in
the training set for the part-of-speech tag combi-
nation of the head and its dependent.

Features are extracted for each possible edge la-
bel due to the edge constrains. However, the parser

285



System Czech French English
Malt 87.32/89.732

MST 88.24/90.912

Merlo 80.38/-
transition-based 77.75/84.581,2) 88.12/90.932) 89.22/91.821,2)

graph-based 81.43/88.011,2) 90.4/92.812) 90.48/92.581,2)

Table 3: Labeled dependency scores / unlabeled dependency scores for top scoring transition-based
dependency parsers. 1 including punctuation, 2 predicted POS-tags

does not need to build always the complete fea-
tures for each of the edge labels. It can extract
once the features for an edge and add later the part
for the edge label. The same strategy again is pos-
sible with the parts of the features of a head and
the set of dependents. The parser extracts once the
properties of the head and iterates over the possi-
ble dependents and adds to the feature part of the
head a part for each of the dependents. The same
strategy is possible for the sibling and grandchil-
dren features.

We could save 81% of the feature creation time
and improve the speed of the parser by 25%. For
instance, for French the parsing time went down
from 0.079 seconds/sentence to 0.059 1

The features consists usually of several compo-
nents. For instance, a standard second order fea-
tures consists of the part-of-speech tag of a head,
a dependent and a grandchild. These parts de-
scribe properties of a edge. There are in addition
functional parts of a feature, which are the type
of a feature and the edge label. The feature type
is used to distinguish features for instance, a sib-
ling features from a grandchild feature. Both types
might have the same parts (equal number of part-
of-speech tags) but they have of cause a different
meaning.

The feature creation function composes parts to
features. This can be done by different opera-
tions. A standard operator is the bit shift opera-
tor. For instance, a tag set might have 52 different
tags. Therefore, 6 bits are needed to encode part-
of-speech-tags. In order to encode several part-
of-speech tags as a long value, we add the inte-
ger value of a part-of-speech tag and shift it by 6
bits. This procedure is repeated until all parts are
encoded. This method wastes some of the encod-
ing space since the 6 bit space could enumerate
64 values. Therefore, we use to encode the values
the multiplication operator and multiply the value

1We used a computer with 12 cores, Intel Westmere and
3.33 Ghz.

by the number of elements in the set, we want to
encode.

The revised feature set combines systematically
each part-of-speech tag, word form, lemma, dis-
tance features of the governor, dependent, sibling
and grandchild. We used instead of a features for
each words between the head and the lemmata,
a single features that is a sorted bag of part-of-
speech tags. The accuracy improved because of
this for Czech and slightly for English as Table 3
shows.

7 Experiments

We trained the parser on English dependency trees
as provided by the CoNLL shared task 2009 and
on dependency trees converted with Penn2Malt
using the head-finding rules of (Yamada and Mat-
sumoto, 2003). Table 4 gives an overview of the
data used with the these head-finding rules. The
training data was 10-fold jackknifed with the tag-
ger included in the Mate-Tools2.

Section Sentences PoS Acc.
Training 2-21 39.832 97.08
Dev 24 1.394 97.18
Test 23 2.416 97.30

Table 4: Overview of the training, development
and test data split converted to dependency graphs
with head-finding rules of (Yamada and Mat-
sumoto, 2003). The last row shows the accuracy
of Part-of-Speech tags.

We optimized our parser on section 24 and used
section 23 of Penn Treebank for evaluation, which
was the test set in the CoNLL shared task.

Table 6 summarizes the results and compares
the result with Zhang and Clark (2008) as well as
Goldberg and Elhadad (2010). We have taken the
results for the Malt parser from Goldberg and El-
hadad (2010).

2http://code.google.com/p/mate-tools/

286



System LAS/UAS Speed (sent./sec.)
Merlo 88.79/-
Clear 89.15/91.18 430
this work 89.22/91.82 30

Table 5: CoNLL Shared Task 2009 Data: La-
beled and unlabeled dependency scores of (Ges-
mundo et al., 2009) (Merlo), Choi and Palmer
(2011) (Clear) and the parser introduced here. 1

including punctuation, 2 predicted POS-tags as
provided in Shared Task.

System UAS Speed (sent./sec)
including punctuation

Malt 88.36
NonDir 89.70 40
this work 91.81 47

excluding punctuation

Z&C08 91.4 50
Z&N11 92.90 29
this work 92.60 47

Table 6: Penn2Malt, Train 2-21, Test 23, pre-
dicted POS-tags: Unlabeled dependency scores
of transition-based dependency parsers Zhang and
Clark (2008) (Z&C08), Zhang and Nivre (2011)
(Z&N11), Malt, NonDir (Goldberg and Elhadad,
2010).

In Table 5, we compare the scores of the
our transition-based dependency parser with other
transition-based parsers. The top score in the
CoNLL Shared task 2009 was obtained by the
parser of Gesmundo et al. (2009). This parser
was ranked first in average for all languages and
third for English, which was the best score of a
transition-based parser for English. The labeled
accuracy score of the dependency parser with
Hash Kernel using the CoNLL data is about 0.4
percentage points higher than that of Gesmundo
et al. (2009) and only slightly higher than the
transition-based parser of Choi and Palmer (2011).

Table 6 shows results for the same data set
but converted with Penn2Malt. The first three
rows compare the result with other papers that in-
cluded punctuation in their evaluation. The Malt
and NonDir parser do not employ a beam search,
which is probably the reason for the lower accu-
racy scores. The parser of Zhang and Clark (2008)
is similar to our parser except that we use the Hash
Kernel, which uses negative features in addition.
The 2011 version (Zhang and Nivre, 2011) was
published in the revision phase of this paper. Their
parser uses a richer feature set and obtains 0.3
higher unlabeled accuracy scores. Remarkable is

that our parser as well as the parser of Zhang get
close to the results of the second order and third
order graph-based dependency parser that carries
out an exhaustive search and obtains 93.04 UAS
on the test set (Koo and Collins, 2010). Our parser
is fast with 47 sentences/second and a beam size
of 80 on a MacBook Pro (2.8 Ghz). Gesmundo
et al. (2009) uses a beam size of 80 as well and
Zhang and Clark (2008) of 64. We use 25 training
rounds.

System English
this work (transition) 92.60/91.48
this work (graph) 93.06/91.96
Z&N11 (transition) 92.9/91.8
KC10 93.04
CCK08 93.50
SICC09 93.79

Table 7: Results obtained by graph-based depen-
dency parser compared with selected transition-
based parsers: Z&N11 (Zhang and Nivre, 2011),
SICC09 (Suzuki et al., 2009), KC10 (Koo and
Collins, 2010), and KCC08 (Koo et al., 2008)

In Table 7, we compare results of transition-
based and graph-based parsers. The upper part
of the table shows results obtained by parsing
systems that do not exploit additional resources.
Our updated second order graph-based parser ob-
tain competitive results with 93.06 UAS. Table 2
shows a more detailed analysis on the level of edge
labels. Both parsers are similar good on major-
ity of the dependency edges. The transition-based
parser has still a bit lower accuracy for the attach-
ment of the root node (ROOT), punctuation marks,
and verb modifiers (VMOD). Reviewing the errors
in dependence to the distance, we could only ob-
serve a very slight tendency that long distance re-
lations are more worse in the case of transition-
based parsers.3 An advantage of the transition-
based parser is that it can observe some third or-
der features, which the parser has already build,
and also some subcategorization features.

Table 3 shows results of the graph-based and
transition-based parser for Czech and English on
the data of the CoNLL shared task 2009. For
French, we use the data of Candito et al. (2010)
as well as the same training, development and
test data split. We obtain in line to English
higher scores for the graph-based parser but the

3The graph-based parser has only 15% error rate on de-
pendency spanning over more than 7 words in contrast to
transition-based parser that has a error rate of 16.8%.

287



difference between the graph-based parser and
transition-based parser for instance for Chzech is
still much higher. We think that the reason for this
are the higher portion of non-projective edges.

8 Conclusion and Future Work

We have presented a fast transition-based depen-
dency parser with competitive labeled and unla-
beled scores. We have shown that a transition-
based parser can benefit from a support vector ma-
chine with Hash Kernel that enables the use of
negative features, which improve the accuracy.

Our transition-based and graph-based parser
performance quite different on the two English
data sets. The graph-based parser has a higher ac-
curacy than the transition-based parser with about
1.2 percentage point for English and 3.7 for Czech
on the data of the CoNLL Shared Task 2009. The
difference between the conversion of the CoNLL
and conversion obtained with the Yamada and
Matsumoto (2003) head finding rules is high. We
observed a difference of 1.2/0.7 LAS/UAS on the
CoNLL data and only 0.4/0.48 LAS/UAS with the
Yamada and Matsumoto (2003) rules. The cause
of this is is probably the larger number of edge la-
bels and the non-projective edges contained in the
CoNLL data.

References
G. Attardi. 2006. Experiments with a Multilanguage

Non-Projective Dependency Parser. In Proceedings
of CoNLL, pages 166–170.

B. Bohnet. 2010. Top accuracy and fast depen-
dency parsing is not a contradiction. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics (Coling 2010), pages 89–97, Bei-
jing, China, August. Coling 2010 Organizing Com-
mittee.

M. Candito, B. Crabb, and P. Denis. 2010. Statis-
tical french dependency parsing: Treebank conver-
sion and first results. In Nicoletta Calzolari (Con-
ference Chair), Khalid Choukri, Bente Maegaard,
Joseph Mariani, Jan Odijk, Stelios Piperidis, Mike
Rosner, and Daniel Tapias, editors, Proceedings
of the Seventh conference on International Lan-
guage Resources and Evaluation (LREC’10), Val-
letta, Malta, may. European Language Resources
Association (ELRA).

X. Carreras. 2007. Experiments with a Higher-order
Projective Dependency Parser. In EMNLP/CoNLL.

J. D. Choi and Martha Palmer. 2011. Getting the most
out of transition-based dependency parsing. In ACL
(Short Papers), pages 687–692.

K. Crammer, O. Dekel, S. Shalev-Shwartz, and
Y. Singer. 2006. Online Passive-Aggressive Al-
gorithms. Journal of Machine Learning Research,
7:551–585.

J. Eisner. 1996. Three New Probabilistic Models for
Dependency Parsing: An Exploration. In Proceed-
ings of the 16th International Conference on Com-
putational Linguistics (COLING-96), pages 340–
345, Copenhaen.

J. Eisner, 2000. Bilexical Grammars and their Cubic-
time Parsing Algorithms, pages 29–62. Kluwer Aca-
demic Publishers.

A. Gesmundo, J. Henderson, P. Merlo, and I. Titov.
2009. A Latent Variable Model of Synchronous
Syntactic-Semantic Parsing for Multiple Languages.
In Proceedings of the 13th Conference on Computa-
tional Natural Language Learning (CoNLL-2009),
Boulder, Colorado, USA., June 4-5.

Y. Goldberg and M. Elhadad. 2010. An efficient
algorithm for easy-first non-directional dependency
parsing. In HLT-NAACL, pages 742–750.

J. Hall, J. Nivre, and J. Nilsson. 2006. Discrimi-
native classifiers for deterministic dependency pars-
ing. In Proceedings of the COLING/ACL 2006 Main
Conference Poster Sessions, pages 316–323, Syd-
ney, Australia, July. Association for Computational
Linguistics.

R. Johansson and P. Nugues. 2008. Dependency-
based Syntactic–Semantic Analysis with PropBank
and NomBank. In Proceedings of the Shared Task
Session of CoNLL-2008, Manchester, UK.

T. Koo and M. Collins. 2010. Efficient third-order de-
pendency parsers. In Proceedings of the 48th An-
nual Meeting of the Association for Computational
Linguistics, pages 1–11, Uppsala, Sweden, July. As-
sociation for Computational Linguistics.

T. Koo, X. Carreras, and M. Collins. 2008. Simple
semi-supervised dependency parsing. In ACL, pages
595–603.

R. McDonald and F. Pereira. 2006. Online Learning of
Approximate Dependency Parsing Algorithms. In
In Proc. of EACL, pages 81–88.

R. McDonald and G. Satta. 2007. On the Complex-
ity of Non-projective Data-driven Dependency Pars-
ing. In IWPT ’07: Proceedings of the 10th Inter-
national Conference on Parsing Technologies, pages
121–132, Morristown, NJ, USA.

R. McDonald, K. Crammer, and F. Pereira. 2005. On-
line Large-margin Training of Dependency Parsers.
In Proc. ACL, pages 91–98.

R. McDonald, K. Lerman, K. Crammer, and F. Pereira.
2006. Multilingual Dependency Parsing with a
Two-Stage Discriminative Parser. In Tenth Confer-
ence on Computational Natural Language Learning
(CoNLL-X), pages 91–98.

288



J. Nivre, J. Hall, and J. Nilsson. 2004. Memory-
Based Dependency Parsing. In Proceedings of the
8th CoNLL, pages 49–56, Boston, Massachusetts.

J. Nivre, J. Hall, S. Kübler, R. McDonald, J. Nils-
son, S. Riedel, and D. Yuret. 2007. The conll
2007 shared task on dependency parsing. In Proc.
of the CoNLL 2007 Shared Task. Joint Conf. on
Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning
(EMNLP-CoNLL), June.

J. Nivre. 2003. An Efficient Algorithm for Projective
Dependency Parsing. In 8th International Workshop
on Parsing Technologies, pages 149–160, Nancy,
France.

J. Nivre. 2009. Non-Projective Dependency Parsing in
Expected Linear Time. In Proceedings of the 47th
Annual Meeting of the ACL and the 4th IJCNLP of
the AFNLP, pages 351–359, Suntec, Singapore.

Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola,
and S.V.N. Vishwanathan. 2009. Hash Kernels for
Structured Data. In Journal of Machine Learning.

J. Suzuki, H. Isozaki, X. Carreras, and M Collins.
2009. An empirical study of semi-supervised struc-
tured conditional models for dependency parsing. In
EMNLP, pages 551–560.

I. Titov and J. Henderson. 2007. A Latent Variable
Model for Generative Dependency Parsing. In Pro-
ceedings of IWPT, pages 144–155.

H. Yamada and Yuji M. 2003. Statistical dependency
analysis with support vector machines. In In Pro-
ceedings of IWPT, pages 195–206.

H. Yamada and Y. Matsumoto. 2003. Statistical De-
pendency Analysis with Support Vector Machines.
In Proceedings of IWPT, pages 195–206.

Y. Zhang and S. Clark. 2008. A tale of
two parsers: investigating and combining graph-
based and transition-based dependency parsing us-
ing beam-search. In Proceedings of EMNLP,
Hawaii, USA.

Y. Zhang and J. Nivre. 2011. Transition-based depen-
dency parsing with rich non-local features. In Pro-
ceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 188–193, Portland, Ore-
gon, USA, June. Association for Computational Lin-
guistics.

289


