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Abstract

Semantic stochastic sentence realization is
still in its fledgling stage. Most of the avail-
able stochastic realizers start from syntactic
structures or shallow semantic input struc-
tures which still contain numerous syntactic
features. This is unsatisfactory since sen-
tence generation traditionally starts from ab-
stract semantic or conceptual structures. How-
ever, a change of this state of affairs requires
first a change of the annotation of available
corpora: even multilevel annotated corpora
of the CoNLL competitions contain syntax-
influenced semantic structures. We address
both tasks—the amendment of an existing an-
notation with the purpose to make it more
adequate for generation and the development
of a semantic stochastic realizer. We work
with the English CoNLL 2009 corpus, which
we map onto an abstract semantic (predicate-
argument) annotation and into which we in-
troduce a novel “deep-syntactic” annotation,
which serves as intermediate structure be-
tween semantics and (surface-)syntax. Our
realizer consists of a chain of decoders for
mappings between adjacent levels of annota-
tion: semantic→ deep-syntactic→ syntactic
→ linearized→ morphological.

1 Introduction

Deep, or semantic, stochastic sentence generation is
still in its fledgling stage. Only a few stochastic gen-
erators start from real semantic input structures; see,
for instance, (Wong and Mooney, 2007; Mairesse
et al., 2010), who use higher order predicate logic
structures as input. Most are either restricted to
syntactic generation (Bangalore and Rambow, 2000;
Langkilde-Geary, 2002; Filippova and Strube, 2008)
or imply a symbolic submodule that operates on se-
mantic structures to derive syntactic structures that

are then used by the stochastic submodule (Knight
and Hatzivassiloglou, 1995; Langkilde and Knight,
1998).

Walker et al. (2002) and Stent et al. (2004)
start from deep-syntactic structures(DSyntSs) as
introduced in the Meaning-Text Theory (MTT)
(Mel’ čuk, 1988), which they consider to be se-
mantic. However, as argued by numerous authors,
DSyntSs are, in fact, genuine syntactic structures,
although they reflect the valency of the lexemes.

Bohnet et al. (2010) use CoNLL 2009 shared
task corpora (Hajǐc, 2009) annotated in accordance
with the PropBank/NomBank annotation guidelines
(Palmer et al., 2005; Meyers et al., 2004), which
they preprocess to adapt for dependency-based gen-
eration: non-connected adjectival modifiers are an-
notated as predicates with their syntactic heads as ar-
guments, detached verbal arguments are connected
with their head, etc. However, the result of this
preprocessing stage is still not a genuine semantic
structure: it contains all nodes of a (surface-) syn-
tactic structure (auxiliaries, governed prepositions,
determiners, etc.), including the nodes of functional
words, and the part of speech tags of the individual
nodes. Furthermore, it maintains the syntactic traces
of the PropBank annotation such as the orientation
of modifier relations and annotation of control and
relative constructions.

All these types of information cannot be counted
upon in most applications of natural language gen-
eration (NLG), which start from numeric time se-
ries or conceptual or semantic structures. In order
to ensure a high quality linguistic generation, sen-
tence realizers must be able to take as input ab-
stract semantic structures derived from numeric time
series or conceptual structures. In this paper, we
present a deep sentence realizer that achieves this
goal. Similar to (Bohnet et al., 2010), we start from
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a CoNLL 2009 shared task corpus. However, unlike
(Bohnet et al., 2010), we extend the CoNLL 2009
annotation in two respects: (i) we map the origi-
nal CoNLL 2009 annotation onto a more abstract
semantic annotation, and (ii) we introduce a deep-
syntactic annotation in the sense of MTT (and as has
already been used by Walker et al. (2002) and Stent
et al. (2004)), which provides intermediate linguistic
structures that do not contain any superficial func-
tional nodes, but rather only the grammatical func-
tion structures. The introduction of the semantic
annotation allows us to get close to the predicate-
argument structures in general considered in gen-
eration as input structures of acceptable abstraction
(Mellish et al., 2006); the introduction of the deep-
syntactic annotation helps ensure high quality out-
put in that it bridges the gap between the abstract se-
mantic structures and concrete linguistic structures
as the “surface-syntactic” structures are. So far, we
carried out experiments only on the generation of
English, but, in principle, our proposal is language-
independent, as Bohnet et al. (2010)’s is.1

In the next section, we introduce the two new lev-
els of annotation of the CoNLL 2009 corpus: the se-
mantic and deep-syntactic annotations, and describe
how we obtain them. In Section 3, we present the
setup of the realizer. Section 4 outlines the indi-
vidual stages of sentence realization: semantics→
deep-syntax→ (surface-)syntax→ linearized struc-
ture→ chain of inflected wordforms. Section 5 de-
scribes the setup of the experiments for the evalua-
tion of the realizer and discusses the results of the
evaluation. Section 7, finally, summarizes the most
important features of the realizer and compares it to
other recent approaches in the field.

2 Adjusting the CoNLL Annotation

As mentioned above, it is common in NLG to start
from abstract input representations: conceptual or
semantic structures derived from ontologies or even
from numeric time series. Since it is not feasible
to map such input structures to the linguistic sur-
face in one shot without sacrifying the entire poten-
tial of linguistic variation, most generators draw on

1Obviously, the derivation of the semantic structure, which
draws upon the available syntactic features remains language-
specific.

models that foresee a number of intermediate repre-
sentations. Common are: 1) conceptual or semantic
representation that is close to the abstraction of the
knowledge in ontologies; 2) syntactic representation
that captures the sentence structure; 3) a linearized
morphological representation that spells out the in-
flection and orders the words in the sentence; see
(Mellish et al., 2006) for an overview.

In order to get close to this ideal picture, we not
only ensure, as Bohnet et al. (2010) do, that the
starting semantic structure, i.e., the PropBank an-
notation, is a connected graph, but, furthermore,
make it truly semantic. Furthermore, we intro-
duce the MTT’s DSyntS as an intermediate struc-
ture. DSyntS links to the semantic structure (SemS)
in that it does not contain any function words, and,
at the same time, to the CoNLL syntactic structure
(SyntS) in that it contains the grammatical func-
tions of the content words. DSyntS thus facilitates a
two-step semantics-syntax projection, allowing for
higher quality generation. For an evaluation of the
quality of our annotations on a manually annotated
gold standard, see (Wanner et al., submitted).

2.1 Deriving the Semantic Annotation

In order to turn a PropBank/NomBank-annotation,
which, when visualized as a tree, looks as illus-
trated in Figure 1,2 into a genuine semantic input
annotation that can serve as departure for stochas-
tic sentence generation, we 1) exclude the functional
nodes from the annotation, 2) substitute syntacticti-
cally motivated arcs by semantic arcs, 3) introduce
missing semantic nodes, minimal information struc-
ture, and 4) ensure connectivity of the semantic an-
notation.
1. Removal of functional nodes and syntactic
edges:The following functional nodes and syntac-
tic edges are removed from the PropBank annota-

2Ai (i = 1,2,3,. . . ) denotes the i-th argument of a predica-
tive word according to this word’s frame (≈ valency) struc-
ture; A0 denotes “the external argument” of a predicative word;
and AM-X denotes a modifier of type X (X = TMP (temporal),
LOC(ation), DIR(ection), MNR (manner), etc.). In the course
of this section, we also refer to R-Ai, C-Ai, NMOD, etc.: R-
Ai (i = 1,2,3,. . . ) stands for “i-th argument in a relative clause”;
and C-Ai (i = 1,2,3,. . . ) for “i-th argument in a control construc-
tion”. For further details, see, e.g., (Palmer et al., 2005; Meyers
et al., 2004) and references therein. NMOD, PMOD, VBD, etc.
are Penn TreeBank tags.
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Figure 1: PropBank/NomBank annotation of the sentence
The largest, Suburban Propane, was already owned by
Quantum.

tion: (i) governed prepositions (i.e., prepositions an-
noted as predicate arguments A1, A2, . . . ); (ii) rel-
ative pronouns (i.e., nodes connected to the govern-
ing verb by an “R-Ax” edge); (iii) determiners and
analytical auxiliaries (identified as such in the Penn
TreeBank and PropBank annotations.);3 (iv) control
construction C-Ax edges since they stand for a syn-
tactic dependency between a semantically controlled
element and a verbal predicate.
2. Substitution of syntactically motivated edges:
“Modifier” construction edges in PropBank AM-
DIR, AM-LOC, AM-MNR, AM-TMP, AM-EXT,
AM-PRD, AM-PNC, AM-CAU, AM-ADV, and
AM-NEG are in their nature syntactic edges in that
they go from the modified to the modifier. However,
from the semantic view, the “modifiers” (or, better,
“attributes” since we talk about semantic structure)
are, in fact, predicative semantemes that take as ar-
gument the node that governs them in the syntac-
tic structure. As a consequence, for these nodes
we invert the original arc and label it with A1 in
most cases. In the case of semantic prepositions
and adverbs with two arguments, the second actant
is linked to the preposition/adverb in question by an
A2-edge.
3. Introduce missing semantic information: The
PropBank annotation does not encode number and
tense information, except for verbs with an an-
alytical tense auxiliary. Since we remove aux-

3Interrogative pronouns are annotated the same way as rel-
ative pronouns in PB, but they are not removed since their re-
moval would imply a loss of meaning; instead, we invert the
R-Ax edge and relabel it with an arc “A1”: an interrogative pro-
noun is also a semantic predicate having as argument what is
being questioned.

iliaries, we add a tense feature to every predi-
cate which has tense; similarly, we add a num-
ber feature to every noun:4 TENSE: “past” for the
PoS-tags VBD, VDD, VHD, VVD and “pres(ent)”
for the PoS-tags VBP|VBZ, VDP|VDZ, VHP|VHZ,
VVP|VVZ;5 NUMBER: “singular” for the PoS-tags
NN and NNP and “plural” for the PoS-tags NNS and
NNPS.
4. Introduce minimal information structure:

In order to be able to map the semantic struc-
ture onto a syntactic tree, a minimal information (or
communicativein terms of Mel’̌cuk (2001)) struc-
ture that captures theme/rheme and given/new is
needed. We add the THEMATICITY and GIVE-
NESS features: “THEMATICITY = theme” is as-
signed to the element which acts as subject in the
syntactic structure and “THEMATICITY = rheme”
to the main verb, the objects and close verb modi-
fiers; “DEFINITENESS = 1” is assigned to elements
with an indefinite determiner in the syntactic struc-
ture, and “DEFINITENESS = 2|3” to elements with
a definite|demonstrative determiner.
5. Ensure connectivity of the semantic structure

As Bohnet et al. (2010), we ensure that the re-
sulting semantic structure is a connected graph in
that we traverse the syntactic dependency tree (i.e.,
the Penn Treebank annotation)dsi of each sentence
xi in the corpus breadth first and examine for each
of dsi ’s nodesn whether (i) it has a correspondence
noden′ in dsi ’s semantic structuresi obtained from
the original shallow semantic graph in stages 1–4
sketched above, and (ii)n′ is connected to the node
that isn’s semantic correspondence node. If not, we
introduce a new arc between them. However, un-
like Bohnet et al. (2010), who use a look-up table
to read out the direction and labels of the introduced
arcs, we implemented a rule-based procedure. This
procedure makes use of PoS tags, syntactic arc la-
bels, and the linearization information contained in
the syntactic tree. Figure 2 shows a sample SemS as
obtained applying Algorithm 2.6

4By doing so, we follow the newly announced Surface Gen-
eration Challengehttp://www.nltg.brighton.ac.
uk/research/genchal11 .

5In case of analytical constructions (e.g.,has built), the
tense-feature is not directly on the verb, but derived from the
syntactic construction.

6The passive ofown is captured in the semantic annotation
by the communicative feature “THEMATICITY = theme” as-
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Figure 2: Semantic annotation of the sentenceThe
largest, Suburban Propane, was already owned by Quan-
tum. (the features assigned to each node are not shown)

2.2 Deriving the Deep-Syntactic Annotation

As pointed out above, DsyntS is meant to facilitate
the mapping between the abstract semantic structure
obtained as described above and the CoNLL syn-
tactic structure. It contains only content nodes, i.e.,
nodes of the semantic structure (function words are
removed, and some nodes such as ”QUANTITY”
or ”ELABORATION” are inserted into the semantic
and deep-syntactic structures), and, at the same time,
syntactic relations since the deep syntactic structure
shows explicitely the structure of the sentence. That
is, the governors and dependents are not organized
based on predicate/argument relations, but rather on
the notion of syntactic governor. The syntactic gov-
ernor of a lexeme is the one that imposes syntac-
tic constraints on its dependents: linearization and
agreement constraints, case or governed preposition
assignments, etc. Hence, like the syntactic structure,
the deep-syntactic structure representation is a tree,
not a graph. Every node at this level contains part-
of-speech tags. Figure 3 shows a sample dsynts.

3 Setup of the Realizer

Our sentence realizer performs the following map-
pings to generate a sentence for a given semantic in-
put graph:
1. Semantic graph→ Deep-syntactic tree
2. Deep-syntactic tree→ Syntactic tree
3. Syntactic tree→ Linearized structure
4. Linearized structure→ Surface

signed tolargest.

Figure 3: Deep-syntactic annotation of the sentenceThe
largest, Suburban Propane, was already owned by Quan-
tum. (the features asssigned to each node are not shown)

Each of the steps is carried out by a decoder that
uses a classifier to select the appropriate operations.

As already Bohnet et al. (2010), we use MIRA
(Margin Infused Relaxed Algorithm) (Crammer et
al., 2006) for the realization of the classifiers. MIRA
has been successfully applied to structured learning
tasks such as dependency parsing and semantic role
labeling.7

We have to perform similar tasks for generation.
The goal is to obtain a function that separates cor-
rect realizations (or items) by a decoder from the in-
correct realizations. The items are characterised by
features provided by feature extractors. The features
are used to obtain a weight vector that separates the
correct and incorrect items. The features are repre-
sented as a vectorφ(xi), which can be multiplied
with the weight vectorw in order to obtain a score.

The weight vectorw can be obtained by an on-
line learning algorithm. Online training considers a
training example in each iteration of the training pro-
cedure. This has the advantage that we can process
one example at a time, keeping only this example in
the memory.

Algorithm 1 shows the outline of the training
algorithm. The algorithm iteratesI times over
all training examplesτ(xi, yi)

n
i=1. A passive-

7The difference between MIRA and the perceptron algo-
rithm is the use of a loss function by MIRA during the training
procedure that measures the regret or cost for a wrong classifi-
cationy′ compared to the correct oney.
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aggressive weight vector update strategy updates at
the beginning of the training procedure the weights
more aggressively. To what extent is determined by
the factorβ.

The weight vectorv accumulates all weights,
which areaveragedat the end of the algorithm to
avoid overfitting (Collins, 2002).

Algorithm 1 : Online learning

Input: τ = {(xi, yi)}ni=1

w(0) = 0; v = 0; i = 0;
β = I ∗N
for n = 1 to I // Training iterations

for n = 1 to N // Training instances
w(i+1) = updatew(i) according to (xi, yi)
v = v + β wi+1

i = i + 1
β = β - 1

w = v/(I ∗N)

4 Sentence Generation

Sentence generation consists in the application of
the previously trained decoders in the sequence out-
lined in the previous section.

4.1 Semantic Generation

Our approach to semantic generation, which con-
sists of the derivation of the deep-syntactic tree from
an input semantic graph, is analogous to graph-
based parsing (Eisner, 1996; McDonald and Pereira,
2006).

The derivation is defined as search for the highest
scoring treey from all possible trees given an input
graphx:

F (x) = argmax Score(y), where y ∈MAP (x)

(with MAP (x) as the set of all trees spanning over
the nodes of the semantic graphx).

As already proposed by Bohnet et al. (2010), the
search is a beam search which creates a maximum
spanning tree.8 Unlike Bohnet et al. (2010), how-
ever, we use “early update” as introduced for parsing
by Collins and Roark (2004): when the correct beam
element drops out of the beam, we stop and update
the model using the best partial solution. The idea

8The maximum spanning tree algorithm can be applied here
thanks to the introduction of the deep-syntactic structure.

behind this is that when all items in the current beam
are incorrect, further processing is obsolete since the
correct solution cannot be reached extending any el-
ements of the beam. When we reach a final state, i.e.
a tree spanning over all words and the correct solu-
tion is in the beam, but not ranked first, we perform
an update as well since the correct element should
have ranked first in the beam.

Algorithm 2 displays the algorithm for the gen-
eration of the deep-syntactic structure from the se-
mantic structure.extend-treesis the central function
of the algorithm. It expands a tree or a set of trees
by one edge, selecting each time the highest scoring
edge. Attachment point for an outgoing edge is any
node; for an incoming edge only the top node of the
built tree.

Algorithm 2 : Semantic generation

//(xi, yi) semantic graph and the deep syntactic tree
//beam-size← 80
// build an initial tree
for all n1 ∈ xi do

trees← {} // empty list of partial trees
for all n2 ∈ xi do

if n1 6= n2 then
for all l ∈ edge-labelsdo

trees = trees∪ {(synt(n1),synt(n2),l)}
trees← sort-trees-descending-to-score(trees)
trees← subset(0,beam-size,trees)
// extend the initial trees consisting of one edge
while rest 6= ∅ do

trees← extend-trees(trees)
trees← sort-trees-descending-to-score(trees)
trees← subset(0,beam-size,trees)
// training: if gold tree is not in the beam
// then update weight vector and continue with next

return first element of trees

For score calculation, we use structured features
composed of the following elements: (i) the lem-
mata, (ii) thedistance between the starting nodes
and the target nodet, (iii) the dir ection of the path
(if the path has a direction), (iv) the sortedbagof in-
going edges labels without repetition, (v) thepath
of edge labels between source and target node. The
templates of the composed structured features are
listed in Table 1. We obtain about 2.6 Million fea-
tures in total. The features have binary values, mean-
ing that a structure has a specific feature or it does
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not.

feature templates
label+dist(s, t)+dir
label+dist(s, t)+lemmas+dir
label+dist(s, t)+lemmat+dir
label+dist(s, t)+lemmas+lemmat+dir
label+dist(s, t)+bags+dir
label+dist(s, t)+bagt+dir
label+path(s, t)+dir

Table 1: Feature templates for the semantic→ deep-
syntactic mapping (‘s’ means “source node” and ‘t’ “tar-
get node” of an edge)

4.2 Deep-Syntactic Generation

Since the DSyntStr contains by definition only con-
tent words, function words such as governed prepo-
sitions, auxiliaries, and determiners must be intro-
duced during the deep-syntactic–surface-syntactic
generation passage in order to obtain a fully spelled
out syntactic tree.

Tree transducersare best suited for this task be-
cause of their capability to rewrite trees. Top down
tree transducers have been independently introduced
by Rounds (1970) and Thatcher (1970) as extensions
of finite state transducers. Tree Transducers have
been already successfully applied in NLP—for in-
stance, in machine translation (Knight and Graehl,
2005). Tree transducers traverse the input trees from
the root to the leaves and rewrite the tree using
rewriting rules.

For DSynt-generation, we use around 280 rules
derived automatically by comparing a gold standard
set of deep-syntactic structures and surface-syntactic
depedency trees. The rules are of the following three
types:

1. Rules introducing an edge and a node:
X⇒ X labels → Y ,

Example: X⇒ X NMOD→ ‘the’
2. Rules introducing a new node and edges be-

tween two nodes:
X labeld→ Y⇒ X label1s → N label2s → Y

Example: XOPRD→ Y⇒ X OPRD→ ’to’ IM→ Y
3. Rules introducing a new node label:

X⇒ N

Example: ’LOCATION’⇒ ’on’

The restricted number of rules and rule types sug-
gests the use of classifiers to select applicable rules

in each stage of the DSynt-generation and thus con-
sider more contextual information for the decision.

We train discriminative classifiers for each of
three rule types that either selects a specific rule or
NONE (i.e., that no rule is to be applied). Some
parts do not need any changes. Therefore, on this
parts there is no need to apply and the classifer has
to select NONE. The Algorithm 3 displays the al-
gorithm for the generation of the surface-syntactic
structure from the deep-syntactic structure. The al-
gorithm uses for score calculation features listed in
Table 2.

Algorithm 3 : Deep Syntactic Generation

//(xi, y
g
i ) the deep syntactic tree

// and gold surface syntactic tree for training case only
// R set of rules
// travers the tree top down depth first
yi ←clone(xi)
node-queue← root(xi)
while node-queue6= ∅ do

//depth first traversal
node← remove-first-element(node-queue)
node-queue← children(node,xi)∪ node-queue
// select the rules, which insert a leaf node
leaf-insert-rules← select-leaf-rules(next-node,xi,R)
yi ← apply(leaf-insert-rules,yi)
// in the training, we update here the weight vector
// if the rules are not equal to the gold rules
//
// select the rules, which insert a node in the tree
// or a new node label
node-insert-rules← select-node-rules(node,xi,R)
// in the training, we update here the weight vector
yi ← apply(edge-insert-rules,yi)

Table 3 shows the confusion matrix of the
DSynt→SSynt transducer rules. The first column
contains the number of the gold rule that should have
been applied; the second the gold rule itself and the
third the actually applied rule. ‘ie:’ is the prefix of
“insert-edge” rules, and ‘in:’ the prefix of “insert-
node” rules.9

As we see, confusions occur, first of all, in the
selection of the correct preposition in<nominal
modifier>–<prepositional modifier> sequences in

9We hope that the Penn TreeBank tags ‘NMOD’, ‘PMOD’,
‘DIR’, ‘OBJ’, etc. are intuitive enough to allow for the under-
standing of the semantics of the rules.
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feature template
pos(node)
pos(head(node))
pos(head(head(node)))
pos(node)+pos(head((node))
pos(node) + pos(head(node))+ edge-label(node)
feature-1(node)
feature-2(node)
feature-3(node)
feature-1(node)+feature-2(node)
lemma(node)
lemma(head(node))
lemma(node)+lemma(head(node))
bag-of-children-pos(node)
sorted-bag-of-children-pos(node)
sorted-bag-of-children-labels(node)

Table 2:posare coarse-grained Part-of-Speech tags,fea-
ture are the features attached to the nodes,lemmaare
node labels,edge-labellabels of edges;feature-1stands
for “definite=yes”,feature-2for “num=sg”, andfeature-3
for “tense=past”

# rule gold rule wrongly applied rule
65 ie:NMOD:for:PMOD ie:NMOD:of:PMOD
40 ie:LOC:in:PMOD ie:NMOD:of:PMOD
34 ie:NMOD:to:PMOD ie:NMOD:of:PMOD
23 ie:NMOD:on:PMOD ie:NMOD:of:PMOD
26 ie:NMOD:with:PMOD ie:NMOD:of:PMOD
18 ie:NMOD:from:PMOD ie:NMOD:of:PMOD
16 ie:DIR:to:PMOD ie:ADV:to:PMOD
12 ie:DIR:from:PMOD ie:DIR:to:PMOD
11 in:NMOD:to
11 ie:NMOD:of:PMOD
10 ie:NMOD:of:PMOD ie:LOC:in:PMOD
9 ie:ADV:at:PMOD ie:ADV:for:PMOD
9 ie:DIR:from:PMOD ie:ADV:from:PMOD
6 ie:PMOD:to:PMOD
8 ie:OBJ:that:SUB
8 ie:OPRD:to:IM
8 ie:LOC:at:PMOD ie:NMOD:with:PMOD

Table 3: Confusion matrix of the dsynt→ synt rules

edge inserting rules. A possible solution to this
problem that needs to be further explored is the in-
clusion of a larger context or/and consideration of
semantic features.

4.3 Linearization and Morphologization

There is already a body of work available in statisti-
cal text generation on linearization and morpholog-
ical realization. Therefore, these subtasks did not
form the focus of our work. In the current version
of the realizer, we use Bohnet et al. (2010)’s imple-
mentations. The linearization is a beam search for an
optimal linearization according to a local and global
score functions.

The morphological realization algorithm selects
the edit script based on the minimal string edit dis-
tance (Levenshtein, 1966) in accordance with the
highest score for each lemma of a sentence obtained
during training and applies then the scripts to obtain
the wordforms.

5 Experiments

To evaluate the proposed realizer, we carried out a
number of experiments, whose setup and results are
presented in what follows.

5.1 Setup of the Experiments

In our experiments, we use the PropBank/NomBank
corpus of the CoNLL shared task 2009, which we
preprocess as described in Section 2 to obtain the
semantic structure from which we start. We fol-
low the usual training, development and test data
split (Langkilde-Geary, 2002; Ringger et al., 2004;
Bohnet et al., 2010). Table 4 provides an overview
of the used data.10

set section # sentences
training 2 - 21 39218
development 24 1334
test 23 2400

Table 4: Data split of the used data in the WSJ Corpus

In order to measure the accuracy of the isolated
components and of the realizer as a whole and to
be able to compare their performance with previous
works, we use measures already used before, for in-
stance, in (Ringger et al., 2004; Bohnet et al., 2010).
Thus, for the semantics→ deep-syntax mapping, we
use the unlabeled and labeled attachment score, as it
is also commonly used in dependency parsing. The
unlabeled attachment score (ULA) is the percentage
of correctly identified heads. The labeled attachment
score (LAS) is the percentage of correctly identi-
fied heads that are in addition correctly labeled by
syntactic functions. For the assessment of the deep-
syntax→ syntax mapping, we use the F-score of
correctly/wrongly introduced nodes. For the eval-
uation of the sentence realizer as a whole, we use

10The raw PropBank/NomBank corpus of the CoNLL shared
task 2009 is the WSJ corpus, such that the section numbers refer
to sections in the WSJ corpus.
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the BLEU metric on a gold standard compiled from
our corpus.

Since we use Bohnet et al. (2010)’s implemen-
tations of the linearization and morphological real-
ization, we use their metrics as well. To assess lin-
earization, three metrics are used: (i) per-phrase/per-
clause accuracy (acc snt.):

acc = correct constituents
all constituents ;

(ii) edit distance metrics:

di = 1− m
total number of words

with m as the minimum number of deletions com-
bined with insertions to obtain the correct order
(Ringger et al., 2004); and (iii) the BLEU-score.

For the asessment of the morphological realiza-
tion, the accuracy score (the ratio between correctly
generated word forms and the entire set of generated
word forms) is used.

5.2 Results of the Experiments

Table 5 displays the figures obtained for both the
isolated stages of the semantic sentence realiza-
tion and the generation as a whole—with reference
to some of the recent works on statistical gener-
ation, and, in particular to (Bohnet et al., 2010),
which is most similar to our proposal.11 We in-
clude the performance of (Bohnet et al., 2010) in two
stages that differ from our semantics→syntax, and
syntax→topology (or linearized structure), and its
overall performance. (Filippova and Strube, 2009)
and (Ringger et al., 2004) are, in fact, not fully com-
parable with our proposal since the data are differ-
ent. Furthermore, Filippova and Strube (2009) lin-
earize only English sentences that do not contain
phrases that exceed 20,000 linearization options—
which means that they filter out about 1% of the
phrases. We include them because these are refer-
ence works with which any new work on statistical
generation has to compete.

5.3 Discussion

The overall performance of our semantic realizer
is comparable (although somewhat lower) to the
performance of (Bohnet et al., 2010). This is

11We do not compare here to (Wong and Mooney, 2007) and
(Mairesse et al., 2010) because the tasks of both are rather dif-
ferent from ours: both explore phrase-based generation.

Mapping Value
Semantics→Deep-Syntax (ULA/LAS) 93.8/87.3
Deep-Syntax→Syntax (correct) 97.5
Syntax→Topology (BLEU) 0.89
All stages (BLEU) 0.64
All stages (BLEU) (Bohnet et al., 2010) 0.659
Semantics→Syntax (ULA/LAS)
(Bohnet et al., 2010) 94.77/89.76
Syntax→Topology (di/acc)
(Bohnet et al., 2010) 0.91/74.96
(Filippova and Strube, 2009) 0.88/67
(Ringger et al., 2004) (BLEU) 0.836

Table 5: Performance of the individual stages of semantic
sentence realization and of the realization as a whole

remarkable given that we start from a consider-
ably more abstract semantic structure that does
not contain any function words and that encodes
some of the information (for instance, information
structure features) in terms of node attributes in-
stead of nodes/arcs. The performance of the se-
mantics→deep-syntax projection is slightly lower
than the semantics→syntax projection of (Bohnet
et al., 2010). However, the quality of our deep-
syntax→syntax projection is rather high—despite
the fact that during this projection new nodes are in-
troduced into the target structure (i.e., the projection
is by far not isomorphic). A more detailed anal-
ysis of this projection shows that the precision of
correctly introduced nodes is 0.79 and the recall is
0.74. As a result, we obtain an F-score of 0.765.
However, the introduction of nodes affects only a
relatively small part of the syntactic structure. Be-
fore we apply the rules, the (gold) deep-syntactic
tree has about 92% correct nodes and correctly at-
tached edges of the (surface) syntactic tree. After the
rule application this value improves to about 97.6%.
Our performance during the syntax→topology stage
is slightly lower than in (Bohnet et al., 2010). This
is the effect of the (imperfect) introduction of func-
tion words (such as determiners and prepositions)
into the syntactic structure at the preceding stage.
But it is still higher than the performance of the ref-
erence realizers such as (Ringger et al., 2004) and
(Filippova and Strube, 2009) for this task.

258



6 Related Work

Most of the widely cited works on statistical gen-
eration which use intermediate syntactic representa-
tions, as, for instance, Knight and Hatzivassiloglou
(1995), Langkilde and Knight (1998) or Ringger et
al. (2004), do not handle statistically the first stage of
generation. Rather, they use rule-based components
to build syntactic trees—even though some of them
actually tackle the issue of statistical lexicalization,
which we do not. Many recent works focalize on
surface realization only, i.e., linearization and mor-
phologization of syntactic representations; see, for
instance, (Bangalore and Rambow, 2000; Filippova
and Strube, 2008).

Mairesse et al. (2010) describe a statistical lan-
guage generator, which uses dynamic Bayesian net-
works to assign a semantic part directly to a phrase.
The representation is based on stacks which con-
tain the semantic information for a sentence de-
composed into phrases. The Bayesian networks
are used to order the phrases and to align seman-
tic parts with phrases. The model generalizes to
some degree since it contains lexicalized backoff
features that reduce the needed semantic cover-
age. For instance, the probabilityP(r = centre
of town l s=reject(area(centre))) is
backed off byP(r = centre of town l h
= centre) .

Wong and Mooney (2007) present a generator
based on an inverted semantic parser. The input
is a partially ordered meaning representation. The
process is similar to the one described in (Mairesse
et al., 2010) in that they do not use any inter-
mediate structure. Their statistical system, trained
on very few sentences (880) produces concurrent
output sentences. To choose the best candidate,
they usen-gram models, as Knight and Hatzivas-
siloglou (1995), Bangalore and Rambow (2000) and
Langkilde-Geary (2002). Walker et al. (2002) and
Stent et al. (2004) describe a trainable sentence plan-
ner for dialog systems. The system uses MTT’s
DSyntSs as intermediate representations. In this
respect, their approach is similar to ours. How-
ever, unlike us, they consider the DSyntSs predicate-
argument structures, mapping fragments of text
plans onto them by a set of operations in a bottom-
up, left-to-right fashion. Starting from DSyntSs,

they then use the rule-based RealPro generator to
generate the sentences (Lavoie and Rambow, 1997).

7 Conclusions

We presented a decoder-based statistical semantic
sentence realizer, which goes significantly beyond
the works in this area, while showing a similar or,
in some aspects, even better performance. The main
difference of our proposal, to the statistical realiz-
ers of Ringger et al. (2004; He et al. (2009) is that
we start with the generation from a truly semantic
(predicate-argument) graph. An important extension
compared to (Langkilde and Knight, 1998; Bohnet
et al., 2010) is the mapping from the semantic graph
to the DSyntS that forms an intermediate structure
between the semantic structure and the (surface-)
syntactic structure. In analogy to the semantic struc-
ture, the DSyntS contains no function words, and in
analogy to the syntactic structure, it contains gram-
matical functions of the words that are present. This
is motivated by the fact that we can easily build first
a syntactic structure and then, in the next step, in-
troduce function words based on the syntactic prop-
erties. We see this approach as the most promising
direction for the derivation of a highly accurate syn-
tactic tree and also in accordance with a holistic lin-
guistic theory, namely MTT.

Unlike many of the previous works, we do not
use at any stage components that are based on man-
ually crafted rules. The abstract nature of the se-
mantic structure and the availability of the DSyntS
is an important add-on when compared to Bohnet
et al. (2010)’s proposal, which starts from a seman-
tic graph that already contains all words. The other
works on statistical generation we know of that draw
upon DSyntSs, namely (Walker et al., 2002; Stent et
al., 2004), seem to overestimate the semantic nature
of DSyntSs in that they consider them as (semantic)
predicate-argument structures, which they are not:
after all, DSyntSs are and remain syntactic struc-
tures, even if abstract ones.

Although we applied our approach so far only
to English, the proposed realizer is language-
independent—as the one proposed by Bohnet et al.
(2010). In the months to come, we will apply it to
other languages. This work will be accompanied
by an effort to reach truly semantic corpus anno-
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tations. The mapping of the PropBank/NomBank
annotation to such an annotation demonstrated that
CoNLL corpora are a good starting point for such an
effort. As pointed out by one of the reviewers, LFG
f-structures and MTT DSyntStrs also have a lot in
common—which suggests experiments on deriving
DSyntStr annotated corpora from LFG corpora.
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