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Abstract

We present a statistical post-editing method
for modifying the dependency labels in a de-
pendency analysis. We test the method us-
ing two English datasets, three parsing sys-
tems and three labelled dependency schemes.
We demonstrate how it can be used both to
improve label accuracy in parser output and
highlight problems with and differences be-
tween constituency-to-dependency converters.

1 Introduction

The quality of dependency analyses produced by au-
tomatic parsing is usually evaluated using both at-
tachment accuracy and label accuracy. A parsing
system’s attachment accuracy reflects its ability to
recover structure correctly, i.e. dependencies be-
tween heads and dependents. Label accuracy, on the
other hand, reflects the system’s ability to correctly
determine the nature of these dependencies. In or-
der to ascertain who did what to whom, the depen-
dency labels are crucial since they allow us to dis-
tinguish between grammatical roles (subjects versus
objects, indirect objects versus adverbial modifiers,
etc.). In this paper we focus on dependency labels
and present a simple post-editing method for boost-
ing label accuracy.

The idea behind the method is to automatically
capture systematic error patterns characterised by
local features. A set of parser output dependency
analyses is compared to a set of gold standard anal-
yses and a label revision model is learned which can
then be applied to new dependency analyses. We ex-

periment with two feature sets to condition the prob-
ability of a label. The first makes use of lexical in-
formation and the second includes more structural
context. We find that both feature sets are effective
on their own but are more so when we backoff to
the non-lexicalised feature set in the event that the
lexicalised feature set does not make a prediction.

The method is designed to fix labelling errors
rather than attachment errors, and in that it differs
from the tree revision rules of Attardi and Ciaramita
(2007). Label and attachment post-editing can be
viewed as complementary techniques and in practice
may potentially be combined within one system. To
our knowledge, this is the first post-editing method
to target dependency label accuracy.

In order to fully demonstrate the strengths and
weaknesses of the post-editing method, we apply
it to two datasets, three parsers and three labelled
dependency schemes. In theory, the method is
language-independent, although, in this study, we
concentrate on English. Our two main datasets are
the Wall Street Journal Section of the Penn Treebank
(Marcus et al., 1994) and QuestionBank (Judge et
al., 2006). We employ two dependency parsers and
one constituency parser. The dependency parsers
are trained directly on dependency trees produced by
applying constituency-to-dependency conversion to
Penn Treebank constituency trees. The constituency
parser, on the other hand, is trained on the Penn
Treebank constituency trees and its output is con-
verted to dependency trees using the same conver-
sion procedure. The dependency parsers we employ
are MaltParser (Nivre et al., 2006) and MSTParser
(McDonald et al., 2005), and the constituency parser
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is the two-stage Charniak and Johnson reranking
parser (Charniak and Johnson, 2005). The use of
more than one labelled dependency scheme is desir-
able not only because there is no one standard de-
pendency scheme for English but also because it al-
lows us to highlight some of the differences between
the various schemes. The three schemes we employ
are LTH (Johansson and Nugues, 2007), Stanford
(de Marneffe et al., 2006; de Marneffe and Manning,
2008) and LFGDEP (Çetinoğlu et al., 2010).

From our experiments with the post-editing
method we can conclude the following:

Constituency Parser Results The post-editing
method results in improved labelled attachment
scores for the Charniak and Johnson parser and the
three dependency schemes. For two of the schemes,
the improvements are statistically significant (89.82
→ 91.12 for LTH and 90.67→ 90.88 for LFGDEP).

Dependency Parser Results The method does not
work well for the two dependency parsers. Our ini-
tial explanation for this failure was the relatively low
attachment accuracy of the dependency parsers in
comparison to the constituency parser — because
the Charniak and Johnson parser has higher un-
labelled attachment accuracy than MaltParser and
MSTParser, it might able to benefit more from
the method since label modifications can only be
learned from correctly attached dependencies. How-
ever, this cannot be the main reason as the method
also works well for the first-stage Charniak parser
(Charniak, 2000) which has unlabelled attachment
accuracy at a similar level to MSTParser.

The importance of function labels and null
elements The difference between the Stanford
scheme and the LTH and LFGDEP schemes is that
the Stanford scheme has been designed to be ap-
plied to constituency trees which do not contain
function labels or null elements.1 The other two
converters work better when applied to trees con-
taining this information and so there is an inherent
mismatch between gold constituency trees, which
contain function labels and null elements, and con-
stituency parser output, which doesn’t (since func-
tion labels and null elements are generally stripped

1Traces, null complementisers, etc. See Bies et al. (1995,
Chapter 4).

from the gold trees before training constituency
parsers). The dependency parsers are trained on
the gold constituency trees with this information in-
tact. We show, for the constituency parser experi-
ments, that the post-editing method can be used to
recover some of the information from function la-
bels by comparing the use of the method on raw con-
stituency parser output to its use on trees which have
been passed through an automatic function labeller.
We show that it can also be used to recover informa-
tion from null elements by comparing the use of the
method on dependency parser output to its use on
dependency parser output which has been produced
by training a dependency parser on gold constituent
trees with null elements removed: the latter is the
only scenario where the post-editing method works
for dependency parsing. To sum up, the post-editing
method is able to recover the kind of information
that is encoded in constituency trees via function la-
bels and null elements.

Training material for the post-editor We find
that the post-editor works when trained on the same
data on which the parser was trained. This is an en-
couraging practical result since it demonstrates that
improvements may be achieved at no additional an-
notation cost.

The paper is organised as follows: we begin by
discussing related work in Section 2; Our datasets,
parsing systems and labelled dependency schemes
are described in Section 3, and the post-editing
method itself is described in Section 4. Our exper-
iments with the post-editing method are presented
and discussed in Section 5. Finally, Section 6 con-
tains some suggestions for future work.

2 Related Work

Attardi and Ciaramita (2007), Keith and Novak
(2005; 2011) and Anguiano and Candito (2011)
present techniques for automatic correction of de-
pendency trees. The basic idea behind these ap-
proaches and the approach described here is the
same — correction rules are learned from training
data consisting of parser output for which gold stan-
dard analyses are available. The difference is that
previous techniques learn how to modify the struc-
ture of the dependency tree, whereas our technique
learns how to modify the labels on individual depen-
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dency arcs. The more general idea of statistical post-
editing has also been applied to machine translation
output (Simard et al., 2007).

Dickinson (2008; 2010) has explored the use of
automated techniques to signpost potential anoma-
lies in parse trees by identifying atypical cases in
both attachments and labelling. Similarly, Goldberg
and Elhadad (2010) present a method to learn the
systematic attachment biases of particular depen-
dency parsing algorithms. Our method, though orig-
inally designed for post-editing, can be also applied
for error analysis purposes. That is, the relabelling
technique can be used, not only as a post-editing cor-
rection step, but also as a type of diagnostic to signal
differences between two sets of dependency trees,
and hence, potential problems with either parser out-
put or gold standards.

Bryl et al. (2009) presented a way of restor-
ing the missing dependency labels in LFG-based
statistical machine translation output. Atomic fea-
tures of LFG f-structures, such as case, number, etc.,
were used as features for a Naive Bayes classifier.
Though the problem is similar to ours, the approach
is not readily reusable for our purpose, because such
atomic features (many of which are highly relevant
for guessing the correct label) are often not used in
the kind of parsers we explore in our work.

3 Data and Tools

3.1 Datasets

We employ two datasets in this work, the Wall Street
Journal Section of the Penn Treebank (Marcus et al.,
1994) and QuestionBank (Judge et al., 2006), a set
of 4,000 manually parse-annotated questions from a
TREC question answering task.2 Both datasets con-
tain constituency trees which have been produced by
an automatic parser and then corrected by hand. It
is important to note that the trees in the WSJ dataset
contain more information than the trees in Question-
Bank, namely null elements and function labels on
nonterminal categories.

We use WSJ22 as our post-editing train-
ing/development set and WSJ23 as our test set. We
use sentences 2001-3000 from QuestionBank as our
post-editing training/development set and sentences

2Questions occur relatively infrequently in the WSJ dataset
(Clark et al., 2004).

3001-4000 as our test set. For the remainder of the
paper, we use the term QuestionDev to refer to this
development set and the term QuestionTest to refer
to the test set.

3.2 Parsing Systems

We evaluate the post-editing method using one con-
stituency parser and two dependency parsers, both
trained on Sections 2-21 of the WSJ section of
the Penn Treebank (Marcus et al., 1994). Our
constituency parser is the Charniak and Johnson
parser, and the dependency parsers are MaltParser
and MSTParser, which exemplify the two main ap-
proaches to statistical dependency parsing, namely,
transition-based dependency parsing and maximum-
spanning-tree dependency parsing.

The Charniak and Johnson parser (C&J) The
Charniak parser (Charniak, 2000) is a generative
constituency parser which uses a head-lexicalised
smoothed PCFG which is conditioned on the parse
history and whose probability model is fine-tuned
for English. We mainly experiment with the rerank-
ing version in which the n-best list returned by the
first-stage generative parser is re-ordered using a dis-
criminative reranker trained on features extracted
from the complete trees (Charniak and Johnson,
2005), although we also test the method with the
first-stage parser.

MaltParser is a multi-lingual transition-based de-
pendency parsing system (Nivre et al., 2006). Dur-
ing training, a classifier learns to predict a parsing
action at a particular parsing configuration using in-
formation from the parse history and the remaining
input string. During parsing, the classifier is used to
deterministically construct a dependency tree. For
our experiments, we use the stacklazy parsing al-
gorithm, which can handle non-projective structures
(Nivre et al., 2009). Following Attardi and Ciarami-
ata (2007) and Zhang and Clark (2008), we train a
linear classifier which models interactions between
features using feature conjunctions.

MSTParser Instead of predicting parsing actions,
MSTParser (McDonald et al., 2005) comes from the
family of dependency parsers which learn to predict
entire dependency trees. The parser finds the maxi-
mum spanning tree in a multi-digraph using one of
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several algorithms described in McDonald (2006).
For our experiments, we use the second-order ap-
proximate non-projective parsing model introduced
in McDonald and Pereira (2006). Labels are pre-
dicted using an atomic maximum entropy model as
in Nivre et al. (2010).

Both MaltParser and MSTParser expects POS-
tagged input — we use SVMTool (Gimenez and
Marquez, 2004) to perform POS tagging.

3.3 Labelled Dependency Schemes

General statistics on the three labelled dependency
schemes are provided in Table 1.

Stanford The Stanford dependency scheme repre-
sents parser output as labelled bilexical dependen-
cies, and it has been designed with real-world appli-
cations in mind (de Marneffe et al., 2006; de Marn-
effe and Manning, 2008). Stanford dependencies
can produce dependencies in different formats. We
focus on basic dependencies, because we want to be
able to compare with two other representations both
of which assume that representations are trees that
include all tokens. Stanford dependencies do not use
null elements and function labels during the conver-
sion and the resulting trees are projective.

LTH In contrast to the Stanford conversion tool,
the LTH tool (Johansson and Nugues, 2007) relies
on the function tag and trace information in con-
stituency trees. The resulting dependencies – which
were used in the CoNLL 2007 dependency parsing
shared task (Nivre et al., 2007) – are designed to
be useful in downstream semantic processing. The
LTH dependency scheme has the richest set of labels
of the representations used in this study and, because
it tries to take trace information into account, has a
higher proportion of non-projective dependencies.

LFGDEP Çetinoğlu et al. (2010) introduce a de-
pendency scheme that takes as a basis a linguisti-
cally motivated Lexical Functional Grammar (LFG)
f-structure and changes it so that it is a dependency
tree. It uses the LFG Annotation Algorithm (AA)
which generates LFG f-structures from Penn Tree-
bank style trees (Cahill et al., 2008). This depen-
dency scheme has a lower number of labels than the
Stanford and LTH dependencies. The trees can be
non-projective but the proportion of non-projectivity

Stanford LTH LFGDEP
# sent 39832 39832 39171
# dep types 49 67 25
non-proj. deps 0% 0.41% 0.29%
non-proj. sents 0% 7.75% 5.62%
head left of modifier 51.6% 60% 53%

Table 1: WSJ sections 02-21 conversion statistics

is not as high as LTH (see Table 1).

4 Dependency Label Post-Editing

The new dependency label for the ith arc in a depen-
dency structure, li,new, is predicted as follows:

li,new = arg max
li,gold

P̂ (li,gold|fi,1, fi,2, ...)

where li,gold is the gold (correct) dependency label
of the ith dependency arc in the structure; fi,1, fi,2,
etc. are features extracted from the parser output;
and P̂ is the approximation of the given probability
calculated on a training dataset for which gold stan-
dard parses are available. If several labels receive
equal probability estimates, the “do not change” out-
come is given priority. With our present method,
we make no assumption about feature independence,
and instead approximate the probability directly:

P̂ (li,gold|fi,1, fi,2, ...) =
count(li,gold, fi,1, fi,2, ...)

count(fi,1, fi,2, ...)

Only correctly attached (in accordance with the
gold standard) dependency arcs are used for train-
ing. We additionally request that the denominator of
the above fraction is not less than 2; in other words,
that a decision is made on the basis of at least two
relevant samples in the training data. It means, that
for some cases no decision is made. This allows us
to combine several post-editing transformations in a
queue. If, for the given case, a post-editing transfor-
mation with a longer feature list refuses to make a
decision, another post-editing transformation with a
shorter feature list may be given a chance.

In the experiments presented in this paper we em-
ploy a combination of two post-editing transforma-
tions, with feature sets as follows (all features are
taken from the parser output; so, for example, “the
dependency label of the arc in question” is the piece
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of data which might be replaced as a result of the
transformation):3

1. Lexicalised feature set: the label of the arc in
question, the POS tag of its dependent word,
and the surface form of its dependent and head
words (see left tree in Figure 1)

2. Non-lexicalised feature set: the label of the
arc in question, the POS tag of its dependent
word and the label of its parent arc (see right
tree in Figure 1)

In our preliminary experiments, Naive Bayes was
also tried on the same features (as well as some other
features, described later in the section) and produced
very discouraging results. Together with some cor-
rect modifications this method made a huge amount
of wrong ones, signalling that the Naive Bayesian
assumption is too strong for these features and leads
to over-generalisation. With Naive Bayes, we also
tried to use concatenations of feature pairs as addi-
tional features (to make the independence assump-
tion slightly less strict); this modification proved in-
sufficient and did not improve the situation. In the
same way, we also tried multi-class SVM4 with a
linear kernel, also with a clearly negative outcome.
Given these results, the methods similar to these two
(e.g. perceptron-based or maximum entropy) are
rather unpromising here.5

The following additional features were used in the
experiments with the described method and/or the
alternative ones (Naive Bayes and SVM) but were
not included in the final configuration as they failed
to noticeably improve the situation: the POS tag of
the parent; the POS tags of the previous and next
words in the sentence; direction to the parent in the
surface word order (parent to the left vs. parent to
the right); presence/absence of siblings.

3We settle on these two feature sets after experimenting on
our development sets.

4SVMmulticlass (http://svmlight.joachims.org)
was used, which is a variant of SVMlight (Joachims, 1999)

5One possibility that could be of interest in future work is
to develop a combined approach: that is, to limit the search for
strict matches in the training data (which is our current method)
to only a subset of features, and in this form to use it as a training
data preselection method for Naive Bayes, SVM or some other
general-purpose classifier.

Figure 1: Lexicalised and unlexicalised features sets

5 Experiments

For both WSJ and QuestionBank, the method is
evaluated on both development and test data. For
evaluation on a development set (QuestionDev or
WSJ22), a leave-one-out approach is used, i.e. each
tree in the development set is corrected with the
posteditor trained on the rest of the same develop-
ment set. For evaluation on a test set (WSJ23 and
QuestionTest), the posteditor is trained on the corre-
sponding development set. For WSJ, we also exper-
iment with using the full parser training data to train
the post-editor. For some experiments, we apply an
automatic function labeller, FunTag (Chrupała et al.,
2007), to the output of C&J, and to the Question-
Bank gold trees (which have not been labelled with
function tags).6 We use the CoNLL evaluation met-
rics of labelled attachment score (LAS) and unla-
beled attachment score (UAS).

5.1 WSJ Results

The results for the WSJ dataset are shown in Ta-
bles 2-4. For each parser type, the baseline scores
are provided first, followed by the post-editing
scores obtained when using WSJ22 for training
(when WSJ22 is stated as both training and test
set, it means that leave-one-out evaluation took
place). The post-editor results when the training set
is WSJ2-21 are given in the third row. The scores
are provided both for WSJ22 and for WSJ23. The
number of correct modifications minus the number
of wrong modifications are provided beside the la-
belled attachment scores.

Concentrating first on the C&J results, we can see
from Tables 2-4 that LTH benefits the most from

6In the task of node function labelling, FunTag achieves an
f-score of 91.47% when evaluated using a dataset consisting of
correctly parsed WSJ23 constituents.
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post-editing. It is followed by LFGDEP and then
Stanford. The reason for these large differences in
correction balances between the conversion schemes
is their design decisions. The parser outputs do not
contain function labels and LTH suffers from the
lack of this information. LFGDEP is less dependent
on them and Stanford is almost insensitive. This
explanation is confirmed by using FunTag. When
function labels are provided by FunTag, the order of
balances remains the same, but the correction bal-
ance drops dramatically for LFGDEP and even more
for LTH, while the already small correction balances
decreases slightly for Stanford dependencies.

For the Stanford scheme, the most success-
ful post-editing rule is the one in which generic
dep relations are converted to more informative
npadvmod7 relations. Using FunTag eliminates
the problem almost without a need for post-editing.
Training the post-editing tool with a larger data set
does not affect the results.

For LTH, relations incorrectly labelled as VMOD
are converted to various other relations including
ADV, SUBJ and OBJ. The correction type break-
down is different for C&J and C&J FT. The VMOD
corrections appear to cease altogether with FunTag,
but actually FunTag only transforms VMOD into DEP
in most of the cases. It still needs to be corrected and
it is successfully handled by the post-editing tool.
In most frequent sub-cases of VMOD => SBJ/OBJ
conversions, the post-editing tool converts them to
the correct label without using FunTag. When the
post-editing tool is trained on WSJ2-21 instead of
WSJ22, it makes fewer modifications — the num-
ber of incorrect modifications in particular drops,
and this explains the increase in correction balance.
The type of the corrections is almost the same, but
how they are corrected differs. When the post-editor
is trained on WSJ22, the non-lexicalised feature set
is used in modifications. The same modifications
are carried out based on the lexicalised feature set
when the size of the training data increases. On
WSJ23, correct modifications increase, and, more
importantly, incorrect modifications drop dramati-
cally. As a result the balance increases by 0.5 %
absolute, a statistically significant improvement.

Looking at the breakdown of results in Table 4,

7noun phrase adverbial modifier

we see that, for the LFGDEP dependency scheme,
the post-editing rules succeed in correctly convert-
ing adjuncts to obliques and complements to ad-
juncts. Very few instances of these corrections re-
main after using FunTag. Post-editing corrects only
topicrel => subj in the C&J FT configura-
tion. This covers sentences with a relative pronoun
which acts both as a subject and a relative topic. Due
to design decisions (there is only one head of a de-
pendent and a grammatical function has a higher pri-
ority than a discourse function), LFGDEP prefers to
keep the subj relation. Gold trees have the sub-
ject information due to traces and coindexation, so
LFGDEP correctly picks the subj relation. Parse
trees lack this information hence, only topicrel
can be assigned. The other remaining correction is
subj => adjunct, which highlights a system-
atic error made by LFGDEP. Using a larger training
data does not change the type of modifications and
slightly increases the correction balance.

Post-editing does not help the dependency parsers
for any of the conversion schemes. A closer look re-
veals that the kind of errors made by the dependency
parsers appear to be unsystematic. One exception
to this is if the dependent word is a preposition, in
which case, additional experiments suggest that it is
worth including in the feature set the surface form of
the dependent. The failure of the method to work for
the two dependency parsers does not appear to be re-
lated to the lower unlabelled attachment accuracy of
Malt and MST in comparision to C&J because the
method also works well for the first-stage Charniak
parser which has a UAS close to that of MST. Inter-
estingly, when null elements are removed from the
gold training constituency trees before conversion
to dependencies for dependency parser training, the
method achieves more promising results. This sug-
gests that the kind of information that is supplied by
the post-editing method is already available in the
dependency parsers’ training data.

5.2 QuestionBank Results

The QuestionBank results in Table 5 are interesting
because they highlight the different ways the post-
editing method can be used. The method works bet-
ter for QuestionBank than for the WSJ dataset be-
cause, for all three parsers, it succeeds in transform-
ing the parser output so that it more closely resem-
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WSJ 22 WSJ 23
Parser UAS LAS UAS LAS
C&J 94.18 91.52 94.21 91.76
C&J post-editor-WSJ22 94.18 91.82 (128 - 26 = 102) 94.21 91.94(20 - 9 = 11)
C&J post-editor-WSJ2-21 94.18 91.80 (118 - 21 = 97) 94.21 91.98(20 - 7 = 13)
C&J FT 94.18 91.94 94.21 92.03
C&J FT post-editor-WSJ22 94.18 91.99 (31 - 14 = 17) 94.21 92.06(109 - 20 = 89)
C&J FT post-editor-WSJ2-21 94.18 91.95 (11 - 10 = 1) 94.21 92.06(129 - 17 = 112)
Malt 90.61 87.98 90.28 87.68
Malt post-editor-WSJ22 90.61 87.93 (11 - 26 = -15) 90.28 87.67(15 - 23 = -8)
Malt post-editor-WSJ2-21 90.61 87.95 (12 - 16 = -4) 90.28 87.68(11 - 8 = 3
MST 91.33 88.76 90.74 88.36
MST post-editor-WSJ22 91.33 88.74 (14 - 26 = -12) 90.74 88.35(22 - 27 = -5)
MST post-editor-WSJ2-21 91.33 88.73 (9 - 16 = -7) 90.74 88.35(7 - 10 = -3)

Table 2: Parser accuracy scores for WSJ 22 and WSJ 23 when Stanford Dep. is used

WSJ 22 WSJ 23
Parser UAS LAS UAS LAS
C&J 92.21 65.32 91.91 64.31
C&J post-editor-WSJ22 92.21 82.57 (6313 - 25 = 6288) 91.91 81.52(8803 - 18 = 8785)
C&J post-editor-WSJ2-21 92.21 84.54 (7112 - 95 = 7017) 91.91 84.46(10377 - 32 = 10345)
C&J FT 93.99 89.66 93.86 89.82
C&J FT post-editor-WSJ22 93.99 90.87 (530 - 92 = 438) 93.86 90.68(659 - 233 = 426)
C&J FT post-editor-WSJ2-21 93.99 90.89 (483 - 26 = 457) 93.86 91.12(710 - 31 = 679)
Malt 90.84 87.18 90.80 87.58
Malt post-editor-WSJ22 90.84 87.22 (87 - 96 = -9) 90.80 87.31(46 - 209 = -163
Malt post-editor-WSJ2-21 90.84 87.17 (21 - 24 = -3) 90.80 87.61(32 - 15 = 17)
MST 92.24 88.8 91.89 88.9
MST post-editor-WSJ22 92.24 88.81 (78 - 78 = 0) 91.89 88.7(40 - 146 = -106)
MST post-editor-WSJ2-21 92.24 88.77 (8 - 19 = -11) 91.89 88.91(9 - 6 = 3)

Table 3: Parser accuracy scores for WSJ 22 and WSJ 23 when LTH is used

bles the gold standard. However, we have to be care-
ful here since the QuestionBank gold dependencies
are even less “gold” than the WSJ gold dependencies
for three reasons: 1) QuestionBank constituency
trees have undergone not one but two automatic pro-
cedures, function labelling (recall that the Question-
Bank constituency trees do not contain functional
labels) and constituency-to-dependency conversion,
2) the constituency trees which are converted to de-
pendencies do not contain null elements, and 3) the
three constituency-to-dependency converters and the
function labeller have been developed using PTB
trees and so they are not expected to perform as well
on questions. Examining the QuestionBank results
in more detail we find problems with the individual
converters as well as problems with parser output.

The LTH converter particularly suffers when ap-
plied to QuestionDev. The most common “correct”

Figure 2: The incorrect gold dependency tree converted
by the LTH scheme

relabelling rules for the two dependency parsers in-
volve a label being converted to the generic DEP
label. In order to investigate these suspicious re-
labelling rules, we inspect the gold standard LTH
QuestionDev dependency trees and find that these
dependency trees are in fact incorrect (see, for ex-
ample, the tree in Figure 2). It is interesting that we
discover this problem by looking at the dependency
parser relabellings — in this case, the post-editing
method is making the dependency parser output
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WSJ 22 WSJ 23
Parser UAS LAS UAS LAS
C&J 92.22 87.35 91.67 87.61
C&J post-editor-WSJ22 92.22 88.77 (678 - 104 = 574) 91.67 88.48 (691 - 196 = 495)
C&J post-editor-WSJ2-21 92.22 89.44 (978 - 148 = 830) 91.67 89.33 (1190 - 235 = 955)
C&J FT 92.85 90.83 92.49 90.67
C&J FT post-editor-WSJ22 92.85 90.99 (97 - 23 = 74) 92.49 90.71 (87 - 53 = 34)
C&J FT post-editor-WSJ2-21 92.85 91.02 (108 - 14 = 94) 92.49 90.88 (145 - 20 = 125)
Malt 89.20 87.19 89.42 87.55
Malt post-editor-WSJ22 89.20 87.18 (26 - 29 = 3) 89.42 87.45 (14 - 62 = -48)
Malt post-editor-WSJ2-21 89.20 87.19 (15 - 15 = 0) 89.42 87.56 (15 - 11 = 4)
MST 91.02 89.12 90.75 88.94
MST post-editor-WSJ22 91.02 89.11 (20 - 21 = -1) 90.75 88.86 (9 - 56 = -47)
MST post-editor-WSJ2-21 91.02 89.11 (2 - 5 = -3) 90.75 88.94 (4 - 3 = -1)

Table 4: Parser accuracy scores for WSJ 22 and WSJ 23 when LFGDEP is used

Figure 3: The incorrect gold dependency tree converted by Stanford dependencies

worse and this could be because the dependency
parsers are trained on dependency trees which were
produced from constituency trees containing null el-
ements and so their output is more accurate than the
QuestionBank gold standard. The experiment (de-
scribed in Section 5.1) which shows that the post-
editor only works for the dependency parsers when
null elements are removed before training, suggests
that this is indeed what is happening. Examination
of the post-editing results highlights a similar (albeit
much smaller) problem with the Stanford converter:
the correct cop dependency label for the copular
verb in a question such as Which X is Y? is replaced
by the incorrect aux dependency label because the
gold Stanford dependency trees are themselves in-
correct (see Figure 3 for an example).

There are also many instances in which the gold
data is correct and the post-editing method succeeds
in correcting labelling errors in parser output. For
example, the Stanford relabelling rules manage to
correct the mislabelled dependency between the ex-
pletive there and the main verb in questions such
as How many James Bond novels are there? from
advmod to expl. An inspection of the LFGDEP

rules show that many correct relabellings are from
subj to xcomp and vice versa in questions of the
form What are/is X?. We have tracked these parser
errors back to the question annotation strategy in the
Penn Treebank. According to the Penn Treebank
bracketing guidelines (Bies et al., 1995), copular
verbs are annotated differently to other main verbs
in questions in that they do not introduce a VP node
(see Figure 4). Judge et al. (2006) comment that
this distinction is difficult for parsers to learn. The
fact that the relabelling occurs for the dependency
parsers (where the conversion is applied to the gold
constituency trees before parser training) as well as
the constituency parser (where the conversion is ap-
plied to the parser output) suggests that this is not
a parser-specific problem and that the gold standard
PTB questions contain some noise.8

6 Conclusion

We have presented a technique for modifying the la-
bels in a dependency tree and shown that it has con-

8An example is the following tree in WSJ02:
( (SBARQ (“ “) (WHNP-305 (WP What) ) (SQ (NP-SBJ (-
NONE- *T*-305) ) (VP (VBZ is) (NP-PRD (NP (DT the) (NN
way) ) (ADVP (RB forward) )))) (. ?) ))
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QuestionDev QuestionTest
Parser UAS LAS UAS LAS
C&J 82.58 78.40 83.62 79.22
C&J post-editor-QDev 82.58 78.72 (41 - 12 = 29) 83.62 79.47(41 - 16 = 25)
C&J FT 82.58 78.41 83.62 79.26
C&J FT post-editor-QDev 82.58 78.73 (41 - 11 = 30) 83.62 79.5(41 - 16 = 25)
Malt 72.59 67.39 74.10 69
Malt post-editor-QDev 72.59 67.65 (56 - 26 = 30) 74.10 69.45(62 - 17 = 45)
MST 74.75 68.9 76.42 70.59
MST post-editor-QDev 74.75 69.62 (99 - 18 = 81) 76.42 71.17(86 - 25 = 61)

(a) Stanford Dependencies

C&J 90.66 68.47 90.99 69.27
C&J post-editor-QDev 90.66 81.34 (1212 - 5 = 1207) 90.99 81.51(1152 - 3 = 1149)
C&J FT 90.78 84.08 91.21 86.9
C&J FT post-editor-QDev 90.78 86.33 (227 - 22 = 205) 91.21 84.81(223 - 30 = 193)
Malt 85.39 66.96 87.08 68.54
Malt post-editor-QDev 85.39 79.37 (1219 - 88 = 1131) 87.08 80.68(1209 - 89 = 1120)
MST 85.29 68.09 87.03 69.64
MST post-editor-QDev 85.29 79.23 (1133 - 113 = 1020) 87.03 67.63(790 - 1043 = -253)

(b) LTH Conversion

C&J 88.47 72.1 88.70 72.46
C&J post-editor-QDev 88.47 81.38 (1017 - 152 = 865) 88.70 81.83 (1041 - 161 = 880)
C&J FT 90.00 82.7 90.43 83.54
C&J FT post-editor-QDev 90.00 85.73 (383 - 109 = 274) 90.43 86.51 (394 - 119 = 275)
Malt 84.89 71.75 85.56 72.61
Malt post-editor-QDev 84.89 78.95 (809 - 155 = 654) 85.56 79.73 (836 - 172 = 664)
MST 85.16 73.06 85.94 74.35
MST post-editor-QDev 85.16 79.52 (751 - 116 = 635) 85.94 71.9 (71 - 297 = -226)

(c) LFGDEP

Table 5: Parser accuracy scores for QuestionDev and QuestionTest
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Figure 4: Question Annotation according to PTB Brack-
eting Guidelines

siderably more success on the Charniak and Johnson
reranking parser (for which it brought about statisti-
cally significant improvements in accuracy) than on
MaltParser and MSTParser. We have also demon-
strated how the technique can be used to pinpoint
problems in automatic constituency-to-dependency
converters. The latter use of the technique is impor-
tant given the absence of a truly gold dependency
test set for English.

In the future we intend to explore the use of the

label post-editing after attachment post-editing. We
also intend to explore the extent to which the method
can be improved by taking into account label hierar-
chies and by imposing global constraints.
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