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Abstract

One of the reasons for the popular-
ity of dependency approaches in recent
computational linguistics is their abil-
ity to efficiently derive the core functor-
argument structure of a sentence as
an interface to semantic interpretation.
Exploring this feature of dependency
structures further, in this paper we
show how basic dependency represen-
tations can be mapped to semantic rep-
resentation as used in Lexical Resource
Semantics (Richter and Sailer 2003),
an underspecified semantic formalism
originally developed as a semantic for-
malism for the HPSG framework (Pol-
lard and Sag 1994) and its elaborate
syntactic representations.

We describe a two stage process, which
in the first stage establishes a syntax-
semantics interface representation ab-
stracting away from some differences
in surface dependencies. It ensures
the local reconstruction of arguments
for middle and long-distance dependen-
cies, before building the actual LRS se-
mantics in the second stage. We eval-
uate the approach on the CREG-109
corpus, a small dependency-annotated
corpus with answers to reading compre-
hension questions written by American
learners of German.

1 Introduction

Computational linguistics in recent years has
seen a rise in interest in tasks that involve
the evaluation and comparison of meaning. A
good example is the research strand which has
developed around the Recognizing Textual En-
tailment Challenge (Dagan et al. 2009). De-

pendency representations have received a lot
of attention in this context given that they
provide access to functor-argument structures
without requiring a computationally costly
commitment to a more complex syntactic con-
stituent structure.

In our work, the task is the evaluation of
answers to reading comprehension questions.
We want to determine, whether the answer
given by a student expresses the same meaning
as that expressed in a target answer given by
the teacher. Such a comparison can be carried
out at different levels of abstraction, starting
with direct comparisons of the surface forms of
words, as, for example, used in the BLEU and
ROUGE metrics for evaluating machine trans-
lation and summarization approaches (Lin and
Och 2004; Lin 2004). At the other extreme
are comparisons on the basis of deep seman-
tic analysis and logical inference, which, how-
ever, in practice do not necessarily outperform
the shallow methods (Bos and Markert 2006).
For exploring the space in-between these two
extremes, looking for representations on the
basis of which meaning can be compared and
how they can robustly be obtained, in this pa-
per we discuss the derivation of underspecified
semantic representations on the basis of a de-
pendency analysis.

We make this process concrete on the basis
of Lexical Resource Semantics (LRS, Richter
and Sailer 2003), an underspecified seman-
tic formalism which provides explicit semantic
representation while at the same time exposing
all minimal building blocks of the semantics.
This is relevant for our overall goal of having
access to a rich space of representations for
comparing meanings even in situations where
no complete semantics can be obtained. Using
LRS essentially allows us to (re)use semantic
analyses developed in model-theoretic frame-
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works. The goal of this research is to further
the understanding of the mapping and the in-
formation needed to derive semantic represen-
tations from bare dependency representations
– with a specific focus on LRS representations
as a kind of normal form facilitating meaning
comparison, an abstraction away from the sig-
nificant well-formed and ill-formed variation
exhibited by learner language.

2 Creating lexically enriched
syntax-semantics interface
representations

To derive semantic LRS representations from
dependency structures, we use a two-step ap-
proach. In the first step, the syntactic struc-
ture is transformed into a syntax-semantics in-
terface representation, from which the seman-
tic contribution of each word can be computed
in the second step, independent of the syntac-
tic structure.

Adopting a two-step approach instead of a
single-step mapping makes the system more
robust and flexible. The feature-based inter-
face representation abstracts away from varia-
tion in form and grammaticality. The seman-
tic representation as such then can be built on
this strongly constrained interface representa-
tion and the system constructing the seman-
tics does not need to take into account the
large space of possible underlying dependency
configurations. The explicit interface repre-
sentation thus makes the semantic construc-
tion process more robust against unexpected
parses. It also makes the procedure building
the semantic representation more transparent.
As we will show, only a small number of rather
simple rules is needed. And implementing new
semantic analyses is rather straightforward if
the relevant information is encoded in the in-
terface representation. Last but not least,
the interface representation also allows us to
build on previous work on semantics within
the HPSG architecture since the system can
model the HPSG syntax-semantics interface
on the lexical level directly.

2.1 The nature of the representations

We focus on the core local, middle-distance
and long-distance relations in a sentence. The
goal is to achieve good coverage of language

phenomena in general as well as to deal with
well-known argument-structure challenges.

The representation used to capture the
properties needed to identify these relations
are represented by a set of features which are
defined for every word. They mainly provide
information about valency, modification and a
more fine-grained labelling of syntactic cate-
gories. The following features are used:

• pred: the core semantic relation ex-
pressed by the word, generally repre-
sented by its lemma

• cat: the syntactic category

• args: the set of arguments with their role
labels. Only semantically non-empty ar-
guments are represented. The elements of
args are feature structures of the form[

role (role label)

arg (the argument itself)

]
.

• mod: a modified word, if there is one

• modtype: type of modification (posses-
sor, time, etc.)

• conjuncts: the conjuncts, if this is a
first conjunct

• interrogative: true if this is an inter-
rogative

• is-predicative: true if this is a verb or
a predicative argument

• tense: the tense of a predicative head

An example interface representation for
schreibt ‘writes’ as in (1) is shown in (2):

(1) Peter
Peter

schreibt
writes

einen
a

Brief.
letter

‘Peter writes a letter.’

(2)


pred ‘schreiben’

args

〈

role subj

arg

pred ‘Peter’

cat noun

ispred false


,


role obja

arg

pred ‘Brief ’

cat noun

ispred false




〉

ispred true

tense present

cat verb-finite
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Extracting this information involves the re-
cursive processing of dependencies and also
identifying where dislocated elements are to be
interpreted. Some of the features are straight-
forward to specify locally. cat, interrog-
ative, for example, can simply be assigned
based on the dependency labels and part-of-
speech tag in the input. However, a well-
investigated set of linguistic phenomena, such
as strong and weak unbounded dependencies
and non-finite constructions, involves depen-
dents which are not realized locally. Our sys-
tem starts out by building interface represen-
tations for local dependency relations only.
The structure is then transformed by a proce-
dure which tries to reconstruct a correct repre-
sentation by moving, copying and adding argu-
ments to the representations of different heads.

2.2 Argument structure challenges

German, as the language we are focusing on
here, includes several phenomena which cause
arguments to be realized separate from the
head they belong to semantically. These
include fronting, extraposition, raising, con-
trol, passive, and the so-called coherent con-
structions of the verbal complex (Bech 1955).
Since relative pronouns and relative clauses
are marked in the dependency parse, identi-
fying relative pronouns with their antecedent
can be achieved by recursively searching the
dependency graph for a dependency whose de-
pendent is labelled as relative clause and which
dominates a given relative pronoun. Other
extraction phenomena and the interaction of
raising, control, passive and the German ver-
bal complex are more complex to handle since
they can interact to form sequences of sev-
eral verbs, with sequences of three or four
verbs being relatively common in written text.
While an in-depth discussion of these phenom-
ena clearly is beyond the scope of this paper
(cf. Meurers 2000 for an overview), let us il-
lustrate the issue with two examples. Sentence
(3) shows a basic example including a future
perfect construction and a modal verb.

(3) dass
that

ihn
him

Peter
Peter

[wird
will

[haben
have

[treffen
meet

können]]]
be able to

‘that Peter will have been able to meet him.’

Here, Peter is interpreted as the subject of
treffen ‘meet’, yet it must also be identified as

the subject of the equi predicate können ‘be
able to’ which is raised further to become the
syntactic subject of the perfect tense auxiliary
haben and to finally be realized as the sub-
ject of the future auxiliary wird, which shows
subject-verb agreement with it. Similarly, ihn
‘him’ is interpreted as the object of treffen
‘meet’, but given that the other predicates all
construct in a coherent verbal cluster, it is ul-
timately realized as a syntactic argument of
the matrix verb wird ‘will’ together with the
raised subject Peter.

That there is indeed a complex interaction
of the different types of lexically triggered
argument sharing phenomena going on that
needs to be captured can readily be illustrated
with the so-called long-distance passivization
(Höhle 1978, pp. 175ff) shown in (4).

(4) wenn
when

der
theN

Wagen
car

[[[zu
to

reparieren]
repair

versucht ]
tried

wird ]
is

‘when it is attempted to repair the car’

Here, the passive auxiliary wird ‘is’ se-
lects the verbal complement versuchen ‘try to’,
which however is not a verb selecting an NP
object that could be promoted to become the
subject. Instead, versuchen selects the ver-
bal argument reparieren ‘to repair’. Since this
is a coherent verbal complex, the argument of
reparieren also becomes a syntactic dependent
of versuchen and as such can then be lifted up
by the passive auxiliary wird to become the
subject of the sentence, with nominative case
and showing subject-verb agreement with the
finite verb.

Building an adequate interface representa-
tion clearly requires lexical information about
the verbs selecting nonfinite complements.
This includes knowledge about whether a verb
is a raising or equi predicate and what its ori-
entation is, i.e., which argument slot the raised
or controlled subject fills. Furthermore, we
need to know which arguments of its own such
a verb selects (as, e.g., the dative NP object
required by the subject control equi verb ver-
sprechen).

A basic reconstruction algorithm The
procedure for reconstructing functional struc-
tures is based on the general observation that
all argument sharing constructions involve a
predicate which specifies something about the
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dependents of its verbal complement. A re-
construction algorithm thus only has to in-
crease the depth of embedding of arguments,
but never has to decrease them. Therefore,
reconstruction starts from the least embedded
verb. Some arguments are moved or copied
to the args list of the nonfinite argument,
and the same procedure is applied recursively
to the embedded predicate, until a predicate
without a nonfinite or predicative complement
is reached. We furthermore assume that the
decision to move an argument can be made lo-
cally and depends only on the two verbs under
consideration.

In each recursive step, the embedded pred-
icate is identified by its function label pred,
obj, or aux. If the dependency parse is cor-
rect and the sentence grammatical, at most
one such argument will be present. If no or
more than one are found, the algorithm stops.
Else, the following operations are carried out:

1. If the matrix verb is not a passive marker,
the argument with the role label match-
ing the verb’s orientation is selected and
copied to the args list of the embedded
verb, where it has role label subject. If
the matrix verb is a raising predicate, the
copied dependent is deleted from its args
list.

2. If the matrix verb is a tense-marking aux-
iliary, the tense value of the embedded
verb is updated.

3. All arguments which do not match a slot
in the verb’s argument frame are moved
to the args list of the embedded verb.
If the surplus arguments cannot be un-
ambiguously determined, no argument is
selected.

4. If the matrix verb is the passive auxil-
iary werden or the dative passive marker
bekommen and the embedded verb is a
passive participle, the subject becomes an
object of the embedded verb. If a von
(‘by’) PP is available, which might en-
code the agent, its relation is changed
to von or subj. Otherwise, an unspecified
subject is added.

As an example, we apply this procedure
to the long-distance passivization example we

saw in (4) in the way illustrated in (5). The ex-
ample shows the args lists before reconstruc-
tion (a) and after the two recursive steps (b-c).

(5) a.
1

[
pred werden

args
〈

AUX 2 , SUBJ Wagen
〉]

2

[
pred versuchen

args
〈

OBJI 3
〉]

3

[
pred reparieren

args 〈〉

]
b.

1

[
pred werden

args
〈

AUX 2
〉]

2

[
pred versuchen

args
〈

OBJI 3 , OBJ Wagen, SUBJ PRO
〉]

3

[
pred reparieren

args 〈〉

]
c.

1

[
pred werden

args
〈

AUX 2
〉]

2

[
pred versuchen

args
〈

OBJI 3 , SUBJ 4 PRO
〉]

3

[
pred reparieren

args
〈

OBJ Wagen, SUBJ 4 PRO
〉]

In the first step, resulting in (5b), the pas-
sive marker wird is dealt with, for which Wa-
gen is removed and turned into the subject of
the passivized verb versucht. It has no overt
agent, therefore a pro subject is added. In the
second step, resulting in (5c), the subject con-
trol equi verb versuchen is considered and its
subject is copied to the args list of repari-
eren. The accusative object Wagen does not
match an argument slot in the lexical entry
of versuchen and is moved to the embedded
verb. The verb reparieren does not embed a
predicate so that the algorithm terminates.

To some extent, this procedure can also deal
with fronting in V2 clauses and with relative
clauses. However, the lexical information only
allows handling dislocated arguments – the
correct attachment of adjuncts cannot be de-
termined.

2.3 Relation to other formalisms

Our interface representations are related to
LFG f-structures (Kaplan and Bresnan 1995).
Most of our features directly translate into
common f-structures features. However, our
interface representations differ from standard
assumptions about f-structures in that they
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are closer to the underlying argument struc-
ture, i.e., the LFG a-structure. In the in-
terface representations of passive verbs, the
agent has the role subj and the patient roles
like obja. Non-thematic subjects and com-
plements are not represented. This treatment
allows a straightforward analysis of some as-
pects of German syntax such as long-distance
passivization, as we will show below. Further-
more, semantic composition is simpler than in
LFG, since the arguments represented in the
interface representation of some word are al-
ways exactly those having a semantic role.

Our two-step approach is also similar to
some aspects of the architecture of Meaning
Text Theory (Mel’cuk 1988). Our interface
representations can be compared to Deep Syn-
tactic Structure, as it also acts as the in-
terface between the surface syntactic depen-
dency structure and a deep semantic repre-
sentation. While we chose a feature-structure
based representation for interface representa-
tions, our features args, mod, modtype and
conjuncts can be seen as direct encodings
of labelled dependency arcs. However, our in-
terface representations differ from Deep Syn-
tactic Structure in Meaning Text Theory in
that they are invariant under phenomena such
as passivization, which are already encoded in
Deep Syntactic Structure.

The representations are also reminiscent of
the linguistic encodings used in HPSG (Pol-
lard and Sag 1994), in particular the treat-
ment of adjuncts as selecting their heads by
the mod feature, which is useful for lexical-
ized semantic composition. The args list is
related to the arg-st list often assumed in
HPSG, which can be seen as representing the
underlying argument structure (Manning and
Sag 1998). Furthermore, it appears that all
the information contained in our representa-
tions is inherent in HPSG analyses and could
easily be automatically extracted.

3 The semantic formalism: LRS

Lexical Resource Semantics (LRS, Richter and
Sailer 2003) is an underspecified semantic for-
malism which embeds model-theoretic seman-
tic languages like Ty2 into typed feature struc-
tures as used in HPSG. It is formalized in
the Relational Speciate Reentrancy Language

(RSRL, Richter 2000). While classical for-
mal semantics uses fully explicit logical for-
mulae, the idea of underspecified formalisms
such as LRS is to derive semantic represen-
tations which are not completely specified and
subsume a set of possible resolved expressions,
thus abstracting away from scope ambiguities.

While other underspecified formalisms used
in HPSG such as MRS (Copestake et al.
2005) encode only an underspecified represen-
tation, whose relation to resolved represen-
tations is external to the representation lan-
guage, an LRS representation includes both a
resolved representation and a representation of
its subexpressions, on which scope constraints
can be expressed by the relation / ’is a subex-
pression of’.

An lrs object has three features: incont
(internal content) encodes the core se-
mantic contribution of the head, excont
(external content) the semantic represen-
tation of the head’s maximal projection, and
parts is a list containing the subterms con-
tributed by the words belonging to the con-
stituent. An example is given in (6), a seman-
tic representation for schreibt in (2).

(6) a.


incont 1 schreiben′(e)

excont 2

parts

〈∃e[ 3 ∧ 4 ],
7 present(ˆ 5 ),

6 ( 1 schreiben′(e)∧
subj(e, peter) ∧ obj(e, y)),
...

〉


b. 6 . 2 ∧ 6 . 3 ∧ 6 . 5

The incont value schreiben′(e) is the core
semantic contribution. The value of ex-
cont is not specified, because it also con-
tains the semantics of arguments and mod-
ifiers of the verb. The parts list contains
three ‘maximal’ terms: ∃e[ 3 ∧ 4 ] is the quan-
tifier for the event variable, present(ˆ 5 ) is
the semantic representation of tense marking
and 6 ( 1 schreiben′(e) ∧ subj(e, x) ∧ obj(e, y))

represents the verb with its argument struc-
ture. Furthermore, parts contains every one
of their subexpressions with the exception of
those which are contributed by another word,
but they are omitted in the figure for reasons
of readability. The three subexpression con-
straints in (6b) ensure that the core semantic
contribution and the specification of the ar-
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guments is part of the representation of the
maximal projection, that the event variable is
bound by a quantifier, and that the tense pred-
icate outscopes the core semantic contribution.

A possible resolved value for excont of
schreibt in example (1) is shown in (7).

(7) 2 (∃y[brief(y) ∧ 7 present(ˆ∃e[ 5 6 ( 3 1

schreiben′(e) ∧ subj(e, peter) ∧ obj(e, y))]])

All elements of parts are subterms of the
complete representation and the subexpression
constraints are satisfied.

Unlike some other implementations of deep
semantic frameworks, LRS does not employ
the lambda calculus as its combinatorial mech-
anism. Instead, a grammar with an LRS se-
mantics contains three sets of constraints link-
ing syntax and semantics. The incont Prin-
ciple ensures that the core semantic contri-
bution (incont) is part of the representation
of the maximal projection and lexically con-
tributed by the word. The excont Prin-
ciple essentially states that all semantic ex-
pressions have to be introduced lexically via
the parts list. The Semantics Principle
is grammar-dependent and we show only one
exemplary clause:

• Incont Principle:

incont is a subterm of excont and a
member of parts.

• Excont Principle:

In a maximal projection, excont is a
member of parts.

In an utterance, α is a member of parts
iff it is a subexpression of excont.

• Semantics Principle:

– If the nonhead is a quantifier, then
the incont value of the head is a
component of the restrictor.

– ...

Adapting LRS for Interface Represen-
tations LRS was originally developed for
constituency-based grammars such as HPSG,
and the combinatorial constraints make refer-
ence to phrasal notions such as maximal pro-
jection. Nevertheless, the formalism can eas-
ily be used for our syntax-semantics interface

representations or standard dependency rep-
resentations. Unlike other underspecified for-
malisms used in HPSG such as MRS (Copes-
take et al. 2005), LRS is strictly lexicalized in
the sense that all subexpressions of the com-
plete semantic representation have to be in-
troduced at the word level, and incont and
excont are the same in all projections of a
head. Therefore, combinatorial constraints in
the Semantics Principle which make refer-
ence to non-maximal projections can straight-
forwardly be reformulated in terms of depen-
dencies or the features args and mod. Repre-
sentations on the level of nonmaximal projec-
tions are not necessary for the combinatorial
mechanisms of LRS to work.

The Excont Principle refers to the ele-
ments parts list of maximal projections, but
this can be replaced by referring to the union
of the semantic contributions of the direct
and indirect dependents. Technically, this can
be implemented in the feature-structure-based
LRS formalism by a second list domain-parts
which is defined recursively as the concatena-
tion of parts and the domain-parts lists of
all dependents of the word. Thus, all combina-
torial constraints of LRS can be translated into
lexicalized, dependency-like formalisms such
as our interface representations.

In the next section, we will show how in-
cont and parts values on the lexical level can
be obtained from interface representations.

4 Building LRS representations

For building the LRS representation, only the
interface representation built in the first step
is required. Building the semantic represen-
tation is completely local and rather straight-
forward since all the required information is
included in the interface representation.

In the beginning, incont and excont are
initialized to unspecified objects; parts to the
empty list. This structure is successively built
up to a full semantic representation by ap-
plying rewrite rules, which can be applied in
any order. Each rule consists of a condition
which is a partial description of the syntac-
tic representation and a consequence, which is
a set of operations for adding information to
the semantic representation. These operations
include: identifying two objects, adding ob-

99



jects to parts, and adding subexpression con-
straints. In the following, we discuss some ex-
emplary rules to illustrate the nature of the
procedure. We will use the name of a feature
to refer to its value, e.g., tense(ˆα) denotes
the application of a function with the tense
value as its name on ˆα. The semantic repre-
sentations given are a selection of items from
parts and in some cases relevant subexpres-
sion constraints. The word to which the rule
applies and the terms added by the rule are
printed in boldface.

cat = verb: Besides a term defining the
predicate, such as schreiben(e), where e is the
event variable, and a quantifier binding the
variable, terms relating the event variable and
the semantic arguments are introduced. If the
argument is marked as predicative, the term
R(e, ˆα) is added, where R is the role label
of the argument. α is constrained to contain
the excont-value of the argument. Other-
wise, the term is simply R(e, x), where x is
the variable associated with the argument. (6)
illustrates this rule. As the figure shows, the
parts list also contains the subexpressions of
the terms added.

cat = aux : Since the semantically relevant
information was already transported to em-
bedded predicates, auxiliaries are not inter-
preted at all. Their parts list is empty and
their incont and excont values are equated
with those of their complement.

cat = preposition: The treatment of
prepositions is designed to maximize the in-
variance of the semantic representation with
regard to the variation between adjunct and
argument PPs, between argument PPs and ar-
gument NPs, and between PPs and pro-forms
such as dahin ‘thither’ and woher ‘whither’,
which also receive cat preposition in the syn-
tactic analysis. Adjunct and argument PPs
are assimilated already in the interface repre-
sentation, where it is assumed that all prepo-
sitions select the head by mod. The incont
value of a preposition is always pred(A1, A2).
If the args list does not contain a comple-
ment, A2 is set to a new variable, i.e., as the
referent of a pronoun or as variable bound by
an interrogative quantifier, which is built by
a different rule operating on all interrogatives.

If there is in argument, A2 is a first- or higher-
order expression as explained for arguments of
verbs. A1 is the index of either the mod value
or the subject. Some aspects of the represen-
tation are illustrated by these examples:

(8) Hans
Hans

war
was

im
in.the

Haus.
house

‘Hans was in the house’

〈in(hans, x), haus(x), past(ˆα), ...〉
with α . in(hans, x)

(9) Wohin
where

geht
goes

Hans?
Hans

‘Where does Hans go to?’

〈gehen(e) ∧ subj(e, hans)∧
wohin(e,x), interrog q x α, ...〉

(10) Hans
Hans

geht
goes

nach
to

Berlin.
Berlin

‘Hans goes to Berlin.’

〈gehen(e) ∧ subj(e, hans)∧
nach(e,berlin), ...〉

cat = adverb, mod 6= none: The INCONT
value of adverbial modifiers is pred(ˆα) with
α . mod|incont, i.e., they outscope the core
semantic contribution of the verb, while the
relative scope of modifiers is not specified.

cat = noun, mod 6= none: For nominal
modifiers, the term modtype(mod|index, in-
dex) is added. This for example accounts for:

(11) das
the

Buch
book

des
the.gen

Kindes
child.gen

‘the child’s book’

〈POSS(x, y), buch(x), kind(y),
def q x [α ◦ β], def q y [γ ◦ δ], ...〉

(12) Hans
Hans

kochte
cooked

zwei
two

Stunden
hours

‘Hans cooked for two hours’

〈kochen(e) ∧ subj(e, hans),TIME(e,x),
stunde(x), 2 x [α ∧ β], ...〉

tense 6= none: The term tense(ˆα) with
α.incont is added. Note that also predicative
NPs and PPs will receive tense marking, as
Peter in (13):

(13) Hans
Hans

war
was

Peter.
Peter

‘Hans was Peter.’

〈PAST(ˆα), hans = peter, ...〉
with α . hans = peter

The total system consists of 22 rules build-
ing the semantic representation from inter-
face representations. Besides basic head-
argument and head-modifier structures, some
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of the covered phenomena are the verb com-
plex, fronting in V2 sentences, relative clauses,
coordination and interrogatives. Phenomena
which we have not implemented yet include ex-
traposition, ellipsis, focus-sensitive modifiers
and discontinuous realization of NPs.

5 Experiment

5.1 Setup

To evaluate the quality and robustness of the
systems, we ran two experiments on a small
German learner corpus. In the first exper-
iment, we ran the system on a manual de-
pendency annotation and evaluated the result-
ing LRS structures. To evaluate the mean-
ing of an ungrammatical learner sentence, we
constructed a grammatical target hypothesis
and then compared it with the automatic se-
mantic analysis. Usually, only one possible
analysis was deemed correct, with the excep-
tion of adverbs or adjectives modifying verbs,
where both an intensional representation (e.g.,
really(ˆcome(e))) and a representation using
the verb’s event variable (real(f)∧ subj(f, e))
were admitted. In a second experiment, we ran
the same procedure on automatic parses ob-
tained from the statistical MaltParser (Nivre
and Hall 2005) trained on Tüba-D/Z (Telljo-
hann et al. 2004) to test the robustness against
parsing errors.

5.2 The corpus used

Starting point is the CREG-109 corpus created
by Ott and Ziai (2010), a sub-corpus of the
Corpus of Reading Comprehension Exercises
in German (CREG, Meurers et al. 2010). It
consists of 109 sentences representing answers
to reading comprehension exercises written by
US college students at the beginner and inter-
mediate levels of German programs. Of these,
17 sentences were classified as ungrammatical
in that they clearly involved errors in word or-
der, agreement, and case government.

The average sentence length is 8.26; the
longest sentence has 17 tokens. CREG-109
was manually annotated by Ott and Ziai
(2010) according to the dependency anno-
tation scheme of Foth (2006), which distin-
guishes thirty-four dependency labels.

5.3 Results

Using the manual dependency annotation, the
semantic representations of 86.2% of the gram-
matical sentences were fully correct. For
70.5% of the ungrammatical sentences, the
analysis was a correct semantic representa-
tion of the target hypothesis. Using the au-
tomatic parses as input for semantic construc-
tion, 65.5% of the grammatical and 47.1% per-
cent of the ungrammatical ones receive a cor-
rect representation.

5.4 Error analysis

Apart from ungrammatical input, most er-
rors in the output arise from difficulties with
coordination or ellipsis. Problems with co-
ordination are even more severe in the case
of automatic parses. Other typical prob-
lems caused by noisy parser output are the
confusion of subjects and complements, PP-
attachment and missing dependencies which
isolate some words. The impact of other parser
errors on the semantic output is often minor
due to the flexibility of the semantic represen-
tation language. For example, errors in the
attachment of adverbs in the verbal complex
are handled to some extent by scope under-
specification.

In other cases, even clearly ungrammatical
structures receive a correct semantic interpre-
tation, even if an automatic parse which dif-
fers from the manual annotation is used. An
example for this is given in Figure 1, which
Ott and Ziai (2010) give as an example of bad
parser performance on ungrammatical input.
The dashed blue dependencies are the human
annotation, and the red dotted the automatic
parse. Inside the relative clause, the copula
is missing and the relative clause has no finite
verb. The human annotators took the pred-
icative adjective alt as the head of the relative
clause and die as its subject, which yields a
correct semantic representation. The parser,
on the other hand, interpreted the predicative
adjective as adjectival modifier and the rela-
tive pronoun as an adverbial modifier. This
usage of pronouns is not expected in correct
parses and there is no rule dealing with it;
therefore, the semantic contribution is empty.
Because the noun modified by an adjective is
interpreted like an adjective’s subject, the ad-
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Figure 1: Parse of an ungrammatical sentence

jective has exactly the same semantic repre-
sentation. Thus, the correct semantic repre-
sentation is obtained for the NP 33,9 Prozent,
die über 25 Jahre alt. The example illus-
trates that abstracting away from the syntac-
tic structure before building the semantic rep-
resentation can help the system perform well
for unexpected syntactic structures which may
arise from learner and parser errors.

6 Related work

Spreyer and Frank (2005) use term rewrite
rules to build RMRS representations for
the TIGER Dependency Bank for German.
RMRS is a robust version of Minimal Re-
cursion Semantics, an underspecified semantic
formalism used in HPSG. Jakob et al. (2010)
present an RMRS system for the Prague De-
pendency Treebank of Czech. Our work dif-
fers in that the input data is learner language
and that the semantic representation language
is LRS. Furthermore, the dependency parses
our system uses contain much less syntactic in-
formation than the two dependency banks, in
particular no tectogrammatical information.

The first step in our system is related to
work on automatically deriving richer feature
structure representations such as f-structures
from treebank parses (cf. Frank 2000; Cahill
et al. 2002). The treebanks used likewise con-
tain more information than the bare depen-
dency parses we use.

7 Conclusion

We presented a system that automatically de-
rives underspecified, model-theoretic seman-
tic representations from dependency parses

of German learner sentences. We argued
that it is beneficial to first transform depen-
dency structures into syntax-semantics inter-
face representations, which reduce the syn-
tactic structure to semantically important in-
formation. In particular, they are invariant
under phenomena such as passivization and
dislocation. We discussed how such repre-
sentations can be obtained from dependency
parses and presented an algorithm for recon-
structing the argument structures of verbs in
the German coherent verbal complex, where
arguments are commonly realized as depen-
dents of other verbs. We showed that Lexical
Resource Semantics, although developed for
HPSG, can straightforwardly be adapted to
dependency-based syntactic representations,
and we presented a sample of a simple rule sys-
tem building semantic representations in LRS
from interface representations. Our evaluation
showed that the architecture can often deal ro-
bustly with learner and parser errors. In fu-
ture work, we intend to put these results on a
more expressive quantitative basis by evaluat-
ing the system on larger native corpora.
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Tilman N. Höhle, 1978. Lexikalistische Sxn-
tax. Die Aktiv-Passiv-Relation und andere
Infinitkonstruktionen im Deutschen. Max
Niemeyer, Tübingen.
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Frank Richter and Manfred Sailer, 2003. Ba-
sic Concepts of Lexical Resource Semantics.
In Arnold Beckmann and Norbert Preining
(eds.), ESSLLI 2003 – Course Material I .
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