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Abstract

In this paper, we investigate errors in syn-
tax annotation with the Turku Dependency
Treebank, a recently published treebank of
Finnish, as study material. This treebank
uses the Stanford Dependency scheme as
its syntax representation, and its published
data contains all data created in the full
double annotation as well as timing infor-
mation, both of which are necessary for
this study.

First, we examine which syntactic struc-
tures are the most error-prone for human
annotators, and compare these results to
those of a baseline automatic parser. We
find that annotation decisions involving
highly semantic distinctions, as well as
certain morphological ambiguities, are es-
pecially difficult for both human annota-
tors and the parser. Second, we train an
automatic system that offers for inspec-
tion sentences ordered by their likelihood
of containing errors. We find that the sys-
tem achieves a performance that is clearly
superior to the random baseline: for in-
stance, by inspecting 10% of all sentences
ordered by our system, it is possible to
weed out 25% of errors.

1 Introduction

In the field of natural language processing (NLP),
human-annotated training data is of crucial impor-
tance, regardless of the specific task. The creation
of this data requires a large amount of resources,
and the data quality affects applications. Thus it
is important to ensure that first, the quality of the
data is as sufficiently high for the desired purpose,

and second, that the amount of expensive manual
work is kept to a reasonable amount. Consider-
ing the importance of manual annotation for NLP,
studies on different aspects of the annotation pro-
cess are of great interest.

This work strives to examine the difficulty of
syntax annotation in the context of Finnish. Our
primary objective is to study human annotation
and the errors in it, so as to make observations
beneficial for future treebanking efforts. As de-
pendency representations have been argued to be a
good choice for the purposes of evaluating the cor-
rectness of an analysis as well as the general intu-
itiveness of evaluation measures (see, for instance,
the work of Lin (1998) and Clegg and Shep-
herd (2007)), and as there exists a recently pub-
lished, dependency-based treebank for Finnish,
also this study uses dependency-based evaluation.

Our experiments are twofold. First, we conduct
an experiment to find which phenomena and con-
structions are especially error-prone for human an-
notators. We also compare human errors to those
of an automatic baseline parser. Second, as a prac-
tical contribution, we build an automatic system
that orders annotated sentences in such a way that
those sentences most likely to contain errors are
presented for inspection first.

The difficulty of annotation is not a heavily
studied subject, but there has been some previous
work. For instance, Tomanek and Hahn (2010)
have studied the difficulty of annotating named en-
tities by measuring annotation time. They found
that cost per annotated unit is not uniform, and
thus suggested that this finding could be used to
improve models for active learning (Cohn et al.,
1996), the goal of which is to select for annotation
those examples that are expected to most benefit
an existing machine learning system. Tomanek et
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Figure 1: The Stanford Dependency scheme. The sentence can be translated as The commission must
ask for clarification from the minister and his assistant.

al. (2010) have conducted a follow-up study using
eye-tracking data, and found that annotation time
and accuracy depend on both the syntactic and se-
mantic complexity of the annotation unit.

Dligach et al. (2010) have studied annotation
costs in the context of word sense disambigua-
tion and concluded that for data annotated solely
for machine learning purposes, single-annotating
a large amount of data appears to be preferable
over double-annotating a smaller amount of data.
On the level of discourse annotation, Zikánová et
al. (2010) have examined typical disagreements
between annotators in the context of discourse
connectives and their scopes, and on the level of
syntax, Dickinson (2010) has studied the possibil-
ities of finding errors in automatic parses in the
context of producing parsebanks.

However, studies in the context of manual syn-
tax annotation in particular have been rare. One
reason for this may be that data which would en-
able such studies is not generally available. Many
treebanks, such as the well-known Penn Tree-
bank (Marcus et al., 1993), are single-annotated,
after an initial annotator training period, and thus
agreement of the annotators cannot be measured
across the whole treebank. Also, timing data for
the annotation process is usually not recorded and
made available.

2 Data: The Turku Dependency
Treebank

In our experiments, we use the first Finnish tree-
bank, the Turku Dependency Treebank (TDT) by
Haverinen et al. (2010). TDT is a treebanking ef-
fort still in progress, and the new version used in
this work is a superset of the recent second re-
lease of the treebank and consists of 7,076 sen-
tences (100,073 tokens). Approximately 10%1 of
this data is not used in our experiments, except
for parser parameter optimization as described be-
low, and this portion of the data will be held se-
cret for the purpose of possible future parser com-

110% on the level of full text documents

parisons and scientific challenges. The remain-
ing 90% of TDT, the portion that was used in this
work, consists of 6,375 sentences (89,766 tokens).
This data will be made available at the address
http://bionlp.utu.fi/.

The annotation scheme of the treebank is a
slightly modified version of the well-known Stan-
ford Dependency (SD) scheme (de Marneffe and
Manning, 2008a; de Marneffe and Manning,
2008b). The annotation in TDT is based on the
basic variant of the scheme, in which the analyses
are trees of dependencies. In total, the scheme ver-
sion of Haverinen et al. contains 45 different de-
pendency types, whereas the original scheme ver-
sion contains 54 types. The scheme modifications
include both omissions of types where the corre-
sponding phenomenon does not occur in Finnish,
and additions where a phenomenon has not been
accounted for in the original SD scheme. Figure 1
illustrates the usage of the SD scheme on a Finnish
sentence. In this paper, we only discuss those as-
pects of the SD scheme that are relevant for the
current study. For further details of the scheme,
we refer the reader to the annotation manual by de
Marneffe and Manning (2008a), and for changes
made during the annotation process of TDT, the
paper by Haverinen et al. (2009).

The Turku Dependency Treebank is exceptional
in the sense that the whole treebank has been
created using full double annotation, where each
sentence is first independently annotated by two
different annotators, and all differences are then
jointly resolved. This results in a single analy-
sis that is called the merged annotation. After-
ward, the treebank data is subjected to consis-
tency checks, the purpose of which is to ensure
that the final release of the treebank, called the
final annotation, consists of analyses that are up-
dated to conform to the newest annotation deci-
sions. Consistency checks are needed, as some
decisions may need revision when the annotation
team comes across new examples, and thus the an-
notation scheme undergoes slight changes.

The treebank also contains the morphologi-
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cal analyses of two Finnish morphology tools by
Lingsoft Ltd., FinTWOL and FinCG (Kosken-
niemi, 1983; Karlsson, 1990).2 Out of these, FinT-
WOL gives each token all of its possible mor-
phological readings, and FinCG disambiguates be-
tween these readings. When unable to fully disam-
biguate, FinCG can select multiple readings.

In addition to the actual treebank — the final an-
notations — TDT releases contain the individual
annotations of each annotator, two per sentence,
and the merged annotations. In addition, the docu-
ments include a full edit history with millisecond-
resolution timestamps.

In total five different annotators have taken part
in the annotation of TDT. The annotators have
backgrounds including PhD and Master’s students
in computer science and linguistics, and also their
prior knowledge of linguistics varies substantially.

Our experiments have been conducted against
the merged annotations, not the final annotations
of the treebank. This is because we want to avoid
penalizing an annotator for a decision that was cor-
rect at annotation time but has later become out-
dated. In addition, the numbers of tokens and
sentences in the individually annotated documents
and in the final treebank documents do not neces-
sarily match, as possible sentence splitting and to-
kenization issues are corrected at the consistency
fix stage of the annotation process. The only ex-
ception to this strategy of comparing individual
annotations against the merged annotation is the
experiment detailed in Section 4, where an anno-
tator re-annotated some of the treebank sentences,
to estimate the quality of the final annotation.

For experiments where a baseline parser was
needed, we used the MaltParser3 (Nivre et al.,
2007). Of the treebank documents, 10% were used
for parameter optimization and excluded from the
experiments. The remaining portion of the tree-
bank was parsed using ten-fold crossvalidation,
meaning that 90% of the data was used to train
a parser and the remaining 10% was then parsed
with it, and this process was repeated ten times in
order to parse the whole data (disregarding the pa-
rameter optimization set) while ensuring that the
training and testing data do not overlap.

2http://www.lingsoft.fi
3http://www.maltparser.org/

3 Error-prone constructions

As the first part of our study, we have examined the
numbers of different errors by the human annota-
tors as well as the baseline parser. In these exper-
iments, all dependencies that remain unmatched
between the merged annotation (henceforth dis-
cussed as gold standard, GS) and the individual
annotation (human or automatic), are considered
errors. In our measurements, we have used the
standard F1-score, defined as F1 = 2PR

P+R , where
P stands for precision and R stands for recall. Pre-
cision, in turn, is the proportion of correctly anno-
tated dependencies out of all dependencies present
in the individual annotation, and recall is the pro-
portion of correctly annotated dependencies out of
all dependencies present in the gold standard. In
some experiments, we also use the labeled attach-
ment score (LAS), the proportion of tokens with
the correct governor and dependency type.

In addition to the measurements described be-
low, we have also studied the overall annotator
performance on the different sections4 of TDT,
in order to find how genre affects the agreement.
However, the differences found were small, and it
appears that the annotator performance on differ-
ent genres is similar to the overall performance.

3.1 Most difficult dependency types

In our first set of measurements, we examined
which dependency types were the most difficult
for the human annotators and the baseline parser.
This was done by calculating an F1-score for each
of the dependency types, and the types with the
lowest F1-scores were considered the most diffi-
cult ones. Only those dependency types that oc-
cur in the gold standard at least 150 times were
considered, in order to avoid taking into account
types that may have extremely low F1-scores, but
which are also very rare, meaning that their being
incorrect hardly affects the overall treebank at all.
Table 1 shows the ten most difficult types for the
annotators, as well as for the baseline parser.5

From this table it can be seen that several of the
most difficult dependency types for human anno-
tators represent a complement of the verb. The
annotation scheme of the treebank contains sev-

4Current sections include Wikipedia and Wikinews texts,
articles from a university online magazine and from student-
magazines, blog entries, EU text and grammar examples.

5In this experiment, we have disregarded the small single-
annotated proportion of TDT constructed in the very begin-
ning of the annotation process in so called trial annotations.
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Human Parser
type P R F freq. type P R F freq.

iccomp 68.8 70.9 69.8 261 (0.3%) parataxis 24.2 8.2 12.3 280 (0.4%)
parataxis 69.9 71.6 70.7 280 (0.4%) advcl 34.9 39.2 36.9 982 (1.3%)
acomp 74.1 70.5 72.2 154 (0.2%) appos 41.3 38.5 39.8 658 (0.9%)
compar 77.0 71.6 74.2 178 (0.2%) compar 62.4 35.3 45.2 178 (0.2%)

dep 85.8 69.4 76.7 291 (0.4%) acomp 53.2 43.5 47.9 154 (0.2%)
advcl 79.2 79.1 79.2 982 (1.3%) rcmod 49.7 48.2 49.0 897 (1.2%)

auxpass 84.9 75.7 80.0 282 (0.4%) ccomp 57.2 49.2 52.9 835 (1.1%)
ccomp 82.2 79.4 80.8 835 (1.1%) iccomp 64.4 47.9 54.9 261 (0.3%)
appos 81.7 80.2 81.0 658 (0.9%) name 50.7 68.0 58.1 1,925 (2.5%)
gobj 88.6 77.4 82.6 579 (0.8%) conj 61.7 62.9 62.3 4,041 (5.3%)

overall 89.9 89.1 89.5 76,693 (100%) overall 71.4 70.2 70.8 76,693 (100%)

Table 1: The ten hardest dependency types for the human annotators and the parser. The standard F1-
score was calculated for each dependency type separately, considering only those types that occur in the
gold standard at least 150 times. This table presents the ten dependency types with the lowest F1-scores.
For each type is given its precision, recall and F1-score, and its frequency in the gold standard.

eral different types for these complements, such as
clausal complement (ccomp) and infinite clausal
complement (iccomp), as well as a clausal comple-
ment with external subject (xcomp). Distinguish-
ing these types, especially ccomp and iccomp, is
often challenging, as the distinction depends on
only the form of the complement verb. Adjecti-
val complements (acomp) likely fall victim to the
difficulty of assessing whether a sentence element
is a complement. The attachment of sentence el-
ements can also be a source of difficulty. For in-
stance, in word order variations of an example like
The man in the brown coat came into the train it
may be difficult to determine whether in the brown
coat should modify man or came into the train. In
these cases, the analysis in the treebank follows
rules similar to those used in the Prague Depen-
dency Treebank (Hajič, 1998), where in The man
in the brown coat came into the train there is con-
sidered to be a man in the brown coat, but in The
man came into the train in a brown coat the com-
ing into the train happened while wearing a brown
coat. These rules, however, are easy to overlook
especially in fast-paced annotation. Adverbial
clause modifiers (advcl), non-complement subor-
dinate clauses, are an example of a phenomenon
where the difficulty of annotation may be partly
due to attachment issues and partly the difficulty
of distinguishing complements and modifiers.

The dependency type parataxis is used to mark
two different phenomena: direct speech and cer-
tain types of implicit clausal coordination, for in-
stance, clauses combined using a semicolon. Es-
pecially the latter use can be difficult due to the
phenomenon being closely related to coordina-
tion. Comparative structures (marked with the

N_GEN
device
laitteen

N_NOM
development
kehittäminen

<gobj

N_GEN
device
laitteen

N_NOM
purpose
tarkoitus

<poss

Figure 2: Genitive objects (left) and other genitive
modifiers (right). The examples can be translated
as the development of the device and the purpose
of the device, respectively. The word laitteen (gen-
itive form of device) is a genitive attribute of the
noun in both examples, but on the left, the noun ke-
hittäminen has been derived from the correspond-
ing verb kehittää (to develop), and the device acts
as the object of the developing. Direct derivations
of a verb are morphologically marked in the tree-
bank, but other verb-related nouns are not.

type compar), in turn, are often elliptical, and it
may be unclear what is being compared with what.

Passive auxiliaries (auxpass) may suffer from
the annotator simply forgetting them, as there is
also a more general dependency type for auxil-
iaries (aux). In some cases drawing the line be-
tween passives and other subjectless expressions6

may be difficult. In addition, some passive partici-
ples can also be interpreted as adjectives, and thus
clauses containing these participles can be read as
copular. Another mistake that is easily made out of
carelessness is that of mistaking genitive objects
(gobj) for more general genitive modifiers (poss).
On the other hand, the distinction of genitive ob-
jects and general genitive modifiers is also highly
semantic in nature. For an illustration of genitive
objects in the SD scheme, see Figure 2.

6such as the zeroth person, nollapersoona (Hakulinen et
al., 2004, §1347)

118



The_professor
Professori

,
,
Matti
Matti

Tamminen
Tamminen

,
,
lectures
luennoi

.

.

<name punct> punct>
<punct

appos>
<nsubj

Professor
Professori

Matti
Matti

Tamminen
Tamminen

lectures
luennoi

.

.

<name <nsubj punct>
<nn

Figure 3: Appositions (top) and appellation modi-
fiers (bottom). The examples can be translated as
The professor, Matti Tamminen, lectures and Pro-
fessor Matti Tamminen lectures, respectively. The
key difference between the examples is that the ap-
position structure includes commas, while the one
with the appellation modifier does not.

Another difficult phenomenon seen in Table 1
is the apposition (appos). Appositions are often
hard to distinguish from nominal modifiers (nom-
mod) due to the semantic requirement that an ap-
position should have the same referent as its head
word. In addition, the annotation scheme distin-
guishes between appositions and appellation mod-
ifiers (marked with the type nn alongside with
noun compound modifiers), where the distinction
usually depends on small details such as the inflec-
tion forms of the words involved or the presence or
absence of punctuation. Figure 3 illustrates appo-
sitions and appellation modifiers in the Finnish-
specific version of the SD scheme. Finally, the
most generic dependency type dep (dependent) is
also among the most difficult types. This type is
meant for cases where no other, more specific type
applies, and in the treebank, it is mostly used for
idiomatic two-word expressions.

The most difficult dependency types for the
automatic parser are in some respects similar
compared to humans, although there are differ-
ences as well. Like human annotators, the parser
had difficulties with different clausal complements
and modifiers (types ccomp, advcl and iccomp),
and unlike humans, it also scored low on rela-
tive clause modifiers (rcmod). Appositions were
also clearly difficult for the parser, which is un-
derstandable due to the semantic distinctions in-
volved. Another two types that were difficult
for the parser but not particularly for humans,
were conj (coordinated element, see Figure 1) and
name. With coordinations, it is difficult for a
parser to decide which sentence element is coordi-
nated with which, and additionally, for instance an
apposition structure may seem coordination-like

without any semantic information. The closely
related parataxis was also especially difficult for
the parser. The low F1-score of the type name,
which is used for multi-word named entities, has
to do, at least partly, with lack of morphological
information. Many of the words that are marked
with name in the training material are unknown
to the morphological analyzer, and thus the parser
is eager to mark unknown words as multi-word
named entities. The overall F1-score of the parser
is 70.8%, compared to the overall human perfor-
mance of 89.5%.

3.2 Dependency type confusions

Seeing that for many of the most difficult depen-
dency types, the potential explanation seemed to
include a possible confusion with another type, we
have investigated this matter further. We have cal-
culated the numbers of those errors where the gov-
ernor is correct, but where the dependency type is
wrong, that is, where a dependency type has been
replaced by another type. Table 2 shows the five
most common type confusions for all five annota-
tors as well as the parser. In total, approximately
32.4% of all erroneous dependencies assigned by
annotators only had an incorrect dependency type.

The confusion errors can be divided into sev-
eral different classes. One error type that can be
seen from the table are errors arising from both
morphological and semantic closeness of two phe-
nomena. For instance, a common type confusion
for nearly all annotators was that of confusing the
types nommod (nominal modifier) and dobj (direct
object). The distinction between nominal modi-
fiers and direct objects is based on both structure
and morphology; objects are complements of the
verb that can only take certain cases of the Finnish
case system (Hakulinen et al., 2004, §925). It is
likely that the semantic closeness of objects and
certain nominal modifiers misled annotators. In
addition, some measures of amount take the same
cases as objects and closely resemble them. A
nominal modifier like this is called an object-cased
amount adverbial7 (Hakulinen et al., 2004, §972).

Also a second confusion seemed to be affected
by morphological and semantic closeness. This
confusion occured particularly for Annotators 2
and 4, who notably confused subjects and objects
on occasion. For other annotators this confusion
occured as well, but not as frequently. Subjects

7objektin sijainen määrän adverbiaali (OSMA)
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Annotator 1 Annotator 2 Annotator 3
GS type annot. type fr. (%) GS type annot. type fr. (%) GS type annot. type fr. (%)
advmod nommod 5.6 dobj nommod 6.8 advmod nommod 6.8

dobj nommod 3.7 gobj poss 5.5 dobj nommod 5.7
auxpass aux 3.0 nsubj dobj 4.8 nommod dobj 4.2

gobj poss 2.9 advmod nommod 4.4 advmod advcl 3.0
nommod advmod 2.6 nommod dobj 4.3 nommod appos 3.0

Annotator 4 Annotator 5 Parser
GS type annot. type fr. (%) GS type annot. type fr. (%) GS type annot. type fr. (%)

dobj nommod 11.5 dobj nommod 7.1 nommod dobj 5.5
nommod dobj 6.0 acomp nommod 7.1 gobj poss 5.4

gobj poss 5.4 partmod advcl 5.4 partmod amod 4.8
nsubj nommod 5.1 appos conj 5.4 nsubj dobj 4.1
nsubj dobj 4.0 nommod dobj 5.4 dobj nommod 4.0

Table 2: The five most common dependency type confusions for each annotator and the parser. For each
confusion is given the gold standard dependency type (GS type) and the type suggested by the annotator
(annot. type), as well as the frequency of the confusion, out of all type confusions by the annotator/parser.

and objects may at first seem like a surprising
confusion pair, but actually, due to several rea-
sons these two can rather easily be confused in
Finnish, especially when annotating quickly. First,
both subject and object use the same cases of the
Finnish case system: the nominative, the partitive,
and the genitive. Second, Finnish is a free word-
order language, and thus the word-order does not
necessarily reveal the role of a word. Also, cer-
tain verbs that are passive-like in nature, but in fact
take a subject and not an object, so called derived
passives 8 (Hakulinen et al., 2004, §1344), further
add to the misleading characters of subjects and
objects. In the majority of cases, it is not difficult
to decide which of the two analyses is correct in
the annotation scheme, once the disagreement is
brought into attention, but rather it is the case that
annotators are easily misled by the similar proper-
ties of these two sentence elements.

A second error type seen in the table is a confu-
sion that is based on a difficult morphological dis-
tinction. The distinction between nominal (nom-
mod) and adverbial modifiers (advmod) was, for
several annotators, among the most difficult ones.
It is not always clear whether a word should be an-
alyzed as an adverb or rather as an inflected noun,
as it is possible for many adverbs to inflect in cer-
tain cases, similarly to nouns. For instance, the
Finnish word pääasiassa (mainly) could be ana-
lyzed as an adverb, or it could be seen as an in-
flected form of the noun pääasia (main thing).

One unexpected type of confusion errors was
typical for Annotator 3 in particular. These errors
are not due to linguistic similarity, but are simply
typographical errors. The annotator has confused

8johdospassiivi

adverb modifiers (advmod) with adverbial clause
modifiers (advcl), which are linguistically rather
easily distinguishable, but in the annotation soft-
ware user interface, the shortcut key for advmod is
capital V, while the shortcut key for advcl is non-
capital v. Similarly, this annotator has confused
also other dependency types where the respective
shortcut keys were capital and non-capital ver-
sions of the same letter, but these were not as fre-
quent. Annotator 1 also used the shortcut keys of
the annotation user interface and made some typo-
graphical errors, although not frequently enough
to appear among the five most common type con-
fusions. An example of such an error by Annotator
1 is the confusion of subjects (nsubj) and adjec-
tival modifiers (amod). The explanation for this
otherwise peculiar error is that the shortcut key for
nsubj is s and the one for amod is a, which are
adjacent on a regular Finnish keyboard.

The automatic parser also displayed confusion
errors in its output (approximately 16.3% of all
erroneous dependencies), involving many of the
same semantic distinctions that were difficult for
humans, such as genitive objects versus other gen-
itive modifiers and nominal modifiers versus di-
rect objects. Notably the confusion of subjects and
objects was also present. Also one morphologi-
cal distinction was among the most difficult ones
for the parser: participal versus adjectival modi-
fiers, where the distinction is, in fact, between par-
ticiples and adjectives. The same confusion was
present for human annotators, but not among the
five most common ones. As an example, consider
the Finnish word tunnettu (well-known). It could
be a form of the verb tuntea (to know), but on the
other hand, it can be given the comparative and
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superlative forms, which are typical of adjectives.
The only type of confusions that did not, naturally,
occur for the parser were the typographical errors.

3.3 Correlation of human and parser errors

An interesting question to study is whether the an-
notator and parser errors correlate with respect to
their position in the sentence. Such correlation
would indicate that certain structures are in some
sense “universally difficult”, regardless of whether
the annotator is human or machine. This corre-
lation is easy to analyze on the level of tokens:
a token is deemed correct if its governor and de-
pendency type are correct. Since we have two in-
dependent human annotations for each sentence,
we take the union of the individual annotators’ er-
rors, thus defining a token as correct only if it was
correctly analyzed by both of the annotators. In
this experiment, we can only take a sentence into
account, if it has both human analyses available.
This is the case for a total of 82,244 tokens not
used for parser optimization, as a small portion
of TDT has, in the very beginning of the anno-
tation process, been constructed in so called trial
annotations, where a single annotator has anno-
tated the sentence and it has then been jointly in-
spected (Haverinen et al., 2009).

The results are shown in Table 3. We
find that 35.9% (8,677/24,152) of parser er-
rors co-occur with human errors, whereas only
a 18.9% (15,548/82,244) co-occurrence, corre-
sponding to the human error-rate, would be
expected by chance. Similarly, we find that
55.8% (8,677/15,548) of human errors co-occur
with parser errors, whereas only a 29.3%
(24,152/82,244) co-occurrence, corresponding to
the parser error-rate, would be expected by
chance. We can thus conclude that there is a
notable positive association between human and
parser errors, strongly statistically significant with
p� 0.001 (Pearson’s chi-square test on Table 3).

human
error correct

parser
error 8,677 15,475

correct 6,871 51,221

Table 3: Token-level correlation between human
and parser errors.

4 Correctness of double-annotated data

As part of our investigation on the number of er-
rors by human annotators, we have conducted a
small-scale experiment on the correctness of the
final treebank annotation. We sampled a random
set of 100 sentences from the final annotations of
the treebank and assigned them to an annotator
who had not annotated them previously. This an-
notator then independently re-annotated these sen-
tences, and the resulting annotation was compared
to the previously existing final annotation in a reg-
ular meeting between all the annotators.

Effectively, we thus gained a set of triple-
annotated sentences. The final annotation of the
corresponding portion of the treebank was com-
pared against these triple-annotated sentences, and
thus we gained an estimate of the error-rate of
the final annotation in the treebank. The LAS
for the final treebank annotation against the triple-
annotated sample as gold standard was 98.1%,
which means that the minimum error-rate of the
final annotation is 1.9%. This is a lower bound, as
it is possible (although unlikely) that further errors
go unnoticed because three annotators have given
a sentence the same, erroneous analysis.

We thus find that full double annotation is an
efficient way to produce annotation of high qual-
ity. The triple annotation agreement of 98.1% to-
gether with the original inter-annotator agreement
of 89.6% in LAS (89.5% in F1 − score) implies
that approximately 82% ((98.1-89.6)/(100-89.6))
of errors remaining in the single annotated docu-
ments can be weeded out using double annotation.

5 Automated recognition of annotation
errors

While full double annotation produces high-
quality results, as shown in the previous sec-
tion, it is undoubtedly a resource-intensive ap-
proach to annotation. In many cases, particularly
when building large treebanks, a compromise be-
tween single and double annotation will be neces-
sary. Under such a compromise annotation strat-
egy, only some proportion of sentences would be
double annotated or otherwise carefully inspected
for errors, while the rest would remain single-
annotated. If we were to select these sentences
randomly, we would expect to correct the same
proportion of annotation errors present in the tree-
bank, assuming that the errors are approximately
evenly distributed throughout the treebank. Thus,
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for example, by randomly selecting 25% of the
sentences for double annotation we would expect
to visit 25% of annotation errors present in the
treebank. The necessary effort would naturally
decrease if we used a strategy that is better than
random at selecting sentences which contain an-
notation errors. In the following, we investigate
a machine-learning based method which, given a
single-annotated sentence, assigns each token a
score that reflects the likelihood of that token be-
ing an annotation error, i.e., not having the correct
governor and dependency type in the tree.

We approach the problem as a supervised binary
classification task where incorrectly annotated to-
kens are the positive class and correctly annotated
tokens are the negative class. Training data for
the classifier can be obtained from the individual
annotators’ trees, by comparing them against the
merged trees resulting from the double annotation
protocol. If for any token its governor or depen-
dency type do not match those in the merged tree,
this token is considered an annotation error (a pos-
itive instance), otherwise it is considered correct (a
negative instance). Since the average LAS of our
annotators is about 90%, the training data contains
about 10% positive instances and 90% negative in-
stances, a considerably disbalanced distribution.

The features that represent the tokens in classi-
fication are as follows:

Annotator The annotator who produced the tree.

Morphology/POS The lemma, POS, and mor-
phological tags given for all possible mor-
phological readings of the word (prefixed
by “cg ” if the reading was selected by the
FinCG tagger). The number of possible mor-
phological readings of the word, and the
number of readings selected by FinCG.

Dependency Whether the token acts as a depen-
dent, the dependency type, and all morphol-
ogy/POS features of the governor, given both
separately and in combination with the de-
pendency type. The same features are also
generated for all dependents of the token un-
der consideration.

We split the available data randomly into a train-
ing set (50%), a parameter estimation set (25%),
and a test set (25%). The split is performed on the
level of documents, so that all instances generated
from both annotations of a single document are al-
ways placed together in one of the three sets. This
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Figure 4: Proportion of annotation errors recov-
ered. The full line represents the machine-learning
based ordering of sentences, while the dashed
line represents a baseline obtained by ordering the
same sentences randomly.

prevents any possible leak of information between
data used for training and that used for testing. As
the classifier, we use the support vector machine
(SVM)9 (Joachims and Yu, 2009) with the radial
basis kernel. We select the C and γ parameters
by a wide grid search on the parameter estimation
set. To account for the pronounced disbalance in
the positive and negative class distribution, we use
the standard area under ROC curve (AUC) perfor-
mance measure, which is not sensitive to class dis-
tribution, and is thus preferred in this case over the
usual F1 or accuracy. We use AUC as both the
SVM loss function and the performance criterion
to select the best parameter combination.

To evaluate the accuracy of the classification,
and its practical impact on annotation, we first cal-
culate for each sentence the maximum of the clas-
sification scores over all of its tokens and then
order the sentences in descending order by this
value. The results on the test set are shown in Fig-
ure 4. The classifier is notably better than the ran-
dom baseline: the first 10% of the sentences con-
tain 25% of all annotation errors, and the first 25%
of the sentences contain 50% of all annotation er-
rors. These differences are large enough to pro-
vide a notable decrease in annotation effort. For
instance, the effort to correct 50% of annotation
errors is halved: only 25% of all sentences need to
be double-annotated, instead of the 50% random
baseline. For a treebank of 10,000 sentences, this

9Implemented in the SVMperf package available at
http://www.joachims.org
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would mean that 2,500 sentences less would need
to be double annotated, a notable reduction of ef-
fort. Here it should be noted that the classifica-
tion problem is relatively difficult: we are asking
a classifier to recognize human mistakes, at a task
at which the humans are 90% correct to start with.

We have also investigated, as an additional fea-
ture for the classification, the time spent by the an-
notator to insert all dependencies for the given to-
ken (governor and all dependents), including de-
pendencies that are removed or relabeled in the
course of the annotation. Our hypothesis was that
those parts of the sentence on which the annota-
tor spent an unusually long time are more diffi-
cult to analyze, and thus prone to error as well.
This experiment is possible since the treebank
contains annotation history data with millisecond-
resolution timestamps. However, a substantial part
of the treebank is annotated so that of the two
individual annotations for each sentence, one is
constructed from scratch with all dependencies in-
serted manually, while the other is constructed
on top of the output of a parser, with the anno-
tator correcting the parser output (Haverinen et
al., 2010). Complete timing data can naturally be
extracted only in the former case, amounting to
119,117 tokens.

We further normalize the annotation timing data
to account for the different baseline annotation
speeds of the annotators, as well as for the simple
fact that the annotation of a token with more de-
pendencies takes longer to complete. We first di-
vide the annotation time of each token by the num-
ber of its dependencies in the completed tree and
then, for each sentence separately, subtract from
each time the mean and divide by standard devia-
tion of the times in that particular sentence. Thus
normalized annotation times were then included as
a feature in the classification. However, no mea-
surable gain in the performance of the classifier
could be observed.

To investigate the correlation between annota-
tion speed and annotation accuracy further, we de-
fine a token as “slow” if the time it took to com-
plete is more than one standard deviation above
the mean10 time in the given sentence (we first
divide by the number of the token’s dependen-
cies, as previously). We then correlate the cor-
rectness and speed of annotation in a contingency

10Variations of this definition were tested and had no effect
on the overall conclusion.

correct incorrect
slow 14,752 2,288

normal 92,290 9,787

Table 4: Correlation between annotation speed
and correctness of tokens. Tokens are defined as
“slow” if their annotation took longer than one
standard deviation above the mean time.

table (Table 4). We find that incorrectly anno-
tated tokens are overrepresented among “slow”
tokens (13.4%), compared to the rest of the to-
kens (9.6%), as per our original hypothesis. This
positive association is strongly statistically signif-
icant (p� 0.001, Pearson’s chi-square test on Ta-
ble 4). While this observation is of some interest,
the magnitude of the difference is likely too small
for practical applications and annotation times do
not seem to provide new information — on top of
the features listed above — to a classifier predict-
ing incorrectly annotated tokens.

6 Conclusions and future work

In this paper, we have studied the difficulty of
syntax annotation in a dependency-based frame-
work, in the context of the Finnish language and
the Stanford Dependency (SD) scheme. We have
studied the different kinds of errors by the anno-
tators and compared these errors with those of a
baseline parser. In addition, we have trained an
automatic system that orders single-annotated sen-
tences so that sentences that are most likely to con-
tain errors are offered for inspection first.

We find that there are several different kinds
of mistakes that humans make in syntax annota-
tion. In this data, different kinds of clausal com-
plements and modifiers were often erroneously
marked, as were comparatives, appositions and
structures with parataxis. Nearly one third of
the erroneous dependencies marked by annotators
were such that only the type of the dependency
was wrong. Morphological and semantic close-
ness of two phenomena seemed to mislead anno-
tators, as for instance adverbial modifiers were of-
ten confused with nominal modifiers, and nomi-
nal modifiers with direct objects. Annotators also
made some mistakes that were not due to any lin-
guistic resemblance, but rather an artifact of an-
notation user interface shortcut keys that were ad-
jacent or capital and non-capital versions of the
same letter. The last type of errors suggests how
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this particular annotation user interface in question
could be improved, or how the usability of possi-
ble future software could be increased.

We also find that our automatic sentence ranker
notably outperforms a random baseline. This
means that using this classifier to order single an-
notated sentences for inspection, it is possible to
significantly reduce the amount of double annota-
tion or other careful inspection needed in a com-
promise setting where full double annotation is not
possible or desired. For instance, if one wanted to
correct 50% of errors in a treebank, using the pro-
posed method, they could inspect only 25% of all
sentences instead of the 50% expected by random
selection — a remarkable decrease in effort.

In the future, the knowledge gained in this work
could be used for developing new methods help-
ful for inspecting manual annotations, and for the
benefit of large annotation efforts in general. Also
studies in for instance the field of active learning,
where the goal is to keep the amount of data an-
notated for machine learning purposes to a mini-
mum, could be conducted.
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